Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201650802> ?p ?o ?g. }
- W3201650802 endingPage "112676" @default.
- W3201650802 startingPage "112676" @default.
- W3201650802 abstract "Vitality loss of trees caused by extreme weather conditions, drought stress or insect infestations, are expected to increase with ongoing climate change. The detection of vitality loss at an early stage is thus of vital importance for forestry and forest management to minimize ecological and economical damage. Remote sensing instruments are able to detect changes over large areas down to the level of individual trees. The scope of our study is to investigate whether it is possible to detect stress-related spectral changes at an early stage using hyperspectral sensors. For this purpose, two Norway spruce (Picea abies) forest stands, both different in age and maintenance, were monitored in the field over two vegetation periods. In parallel, time series of airborne hyperspectral remote sensing data were acquired. For each stand 70 trees were artificially stressed (ring-barked) and 70 trees were used as control trees. The data collected in south-eastern Germany consists of measurements at multiple times and at different scales: (1) crown conditions were visually assessed in the field (2) needle reflectance spectra were acquired in the laboratory using a FieldSpec spectrometer, and (3) hyperspectral airborne data (HySpex) were flown at 0.5 m spatial resolution. We aimed for a simultaneous data acquisition at the three levels. This unique data set was investigated whether any feature can be discriminated to detect vitality loss in trees at an early stage. Several spectral transformations were applied to the needle and tree crown spectra, such as spectral derivatives, vegetation indices and angle indices. All features were examined for their separability (ring-barked vs. control trees) with the Random Forest (RF) classification algorithm. As result, the younger, well maintained forest stand only showed minor changes over the 2-year period, whereas changes in the older forest stand were observable both in the needle and in the hyperspectral tree crown spectra, respectively. These changes could even be detected before changes were visible by field observations. The tree spectral reactions to ring-barking were first noticeable 11 months after ring-barking and 6 weeks before they were visible by field inspection. The most discriminative features for separating the two groups were the reflectance spectra and the spectral derivatives, over the VIs or angle indices. The tree crown spectra of the two groups could be separated by the RF classifier with a 79% overall accuracy at the beginning of the second vegetation period and 1 month later with 92% overall accuracy with high kappa index. The results clearly demonstrate the great potential of hyperspectral remote sensing in detecting early vitality changes of stressed trees." @default.
- W3201650802 created "2021-09-27" @default.
- W3201650802 creator A5014728233 @default.
- W3201650802 creator A5033762414 @default.
- W3201650802 creator A5056490551 @default.
- W3201650802 creator A5059216164 @default.
- W3201650802 creator A5060846410 @default.
- W3201650802 creator A5077325006 @default.
- W3201650802 creator A5089048082 @default.
- W3201650802 date "2021-12-01" @default.
- W3201650802 modified "2023-09-29" @default.
- W3201650802 title "Early detection of spruce vitality loss with hyperspectral data: Results of an experimental study in Bavaria, Germany" @default.
- W3201650802 cites W1543507298 @default.
- W3201650802 cites W1772504446 @default.
- W3201650802 cites W1773704027 @default.
- W3201650802 cites W1822483748 @default.
- W3201650802 cites W1969177710 @default.
- W3201650802 cites W1978283906 @default.
- W3201650802 cites W1978617972 @default.
- W3201650802 cites W1985555755 @default.
- W3201650802 cites W1985755602 @default.
- W3201650802 cites W1989203457 @default.
- W3201650802 cites W1993443125 @default.
- W3201650802 cites W1997597499 @default.
- W3201650802 cites W2001462218 @default.
- W3201650802 cites W2002973025 @default.
- W3201650802 cites W2011475440 @default.
- W3201650802 cites W2013328968 @default.
- W3201650802 cites W2017926030 @default.
- W3201650802 cites W2021729752 @default.
- W3201650802 cites W2021889809 @default.
- W3201650802 cites W2030106896 @default.
- W3201650802 cites W2030233869 @default.
- W3201650802 cites W2036003376 @default.
- W3201650802 cites W2047099804 @default.
- W3201650802 cites W2053943079 @default.
- W3201650802 cites W2066042910 @default.
- W3201650802 cites W2066310218 @default.
- W3201650802 cites W2066323910 @default.
- W3201650802 cites W2066724429 @default.
- W3201650802 cites W2070858879 @default.
- W3201650802 cites W2072861672 @default.
- W3201650802 cites W2073555669 @default.
- W3201650802 cites W2076923985 @default.
- W3201650802 cites W2081895269 @default.
- W3201650802 cites W2084988036 @default.
- W3201650802 cites W2085415038 @default.
- W3201650802 cites W2091688953 @default.
- W3201650802 cites W2091874171 @default.
- W3201650802 cites W2096542206 @default.
- W3201650802 cites W2097092607 @default.
- W3201650802 cites W2109806406 @default.
- W3201650802 cites W2111759081 @default.
- W3201650802 cites W2111947859 @default.
- W3201650802 cites W2117160001 @default.
- W3201650802 cites W2129980173 @default.
- W3201650802 cites W2150452912 @default.
- W3201650802 cites W2156074310 @default.
- W3201650802 cites W2165868425 @default.
- W3201650802 cites W2165916356 @default.
- W3201650802 cites W2166665947 @default.
- W3201650802 cites W2178471458 @default.
- W3201650802 cites W2273708466 @default.
- W3201650802 cites W2553436450 @default.
- W3201650802 cites W2560901046 @default.
- W3201650802 cites W2568616777 @default.
- W3201650802 cites W2587019393 @default.
- W3201650802 cites W2591466624 @default.
- W3201650802 cites W2606093983 @default.
- W3201650802 cites W2618708155 @default.
- W3201650802 cites W2748383201 @default.
- W3201650802 cites W2753022150 @default.
- W3201650802 cites W2756843371 @default.
- W3201650802 cites W2760577391 @default.
- W3201650802 cites W2781487732 @default.
- W3201650802 cites W2783802546 @default.
- W3201650802 cites W2793366794 @default.
- W3201650802 cites W2810026708 @default.
- W3201650802 cites W2888218114 @default.
- W3201650802 cites W2911886196 @default.
- W3201650802 cites W2911964244 @default.
- W3201650802 cites W2922476837 @default.
- W3201650802 cites W2953411856 @default.
- W3201650802 cites W2988576146 @default.
- W3201650802 cites W3012435870 @default.
- W3201650802 cites W3012968398 @default.
- W3201650802 cites W3095164275 @default.
- W3201650802 cites W3138085946 @default.
- W3201650802 cites W9910819 @default.
- W3201650802 doi "https://doi.org/10.1016/j.rse.2021.112676" @default.
- W3201650802 hasPublicationYear "2021" @default.
- W3201650802 type Work @default.
- W3201650802 sameAs 3201650802 @default.
- W3201650802 citedByCount "16" @default.
- W3201650802 countsByYear W32016508022022 @default.
- W3201650802 countsByYear W32016508022023 @default.
- W3201650802 crossrefType "journal-article" @default.
- W3201650802 hasAuthorship W3201650802A5014728233 @default.