Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201675569> ?p ?o ?g. }
- W3201675569 endingPage "3204" @default.
- W3201675569 startingPage "3189" @default.
- W3201675569 abstract "Fake reviews, also known as deceptive opinions, are used to mislead people and have gained more importance recently. This is due to the rapid increase in online marketing transactions, such as selling and purchasing. E-commerce provides a facility for customers to post reviews and comment about the product or service when purchased. New customers usually go through the posted reviews or comments on the website before making a purchase decision. However, the current challenge is how new individuals can distinguish truthful reviews from fake ones, which later deceives customers, inflicts losses, and tarnishes the reputation of companies. The present paper attempts to develop an intelligent system that can detect fake reviews on e-commerce platforms using n-grams of the review text and sentiment scores given by the reviewer. The proposed methodology adopted in this study used a standard fake hotel review dataset for experimenting and data preprocessing methods and a term frequency-Inverse document frequency (TF-IDF) approach for extracting features and their representation. For detection and classification, n-grams of review texts were inputted into the constructed models to be classified as fake or truthful. However, the experiments were carried out using four different supervised machine-learning techniques and were trained and tested on a dataset collected from the Trip Advisor website. The classification results of these experiments showed that naïve Bayes (NB), support vector machine (SVM), adaptive boosting (AB), and random forest (RF) received 88%, 93%, 94%, and 95%, respectively, based on testing accuracy and tje F1-score. The obtained results were compared with existing works that used the same dataset, and the proposed methods outperformed the comparable methods in terms of accuracy." @default.
- W3201675569 created "2021-10-11" @default.
- W3201675569 creator A5001028437 @default.
- W3201675569 creator A5026937315 @default.
- W3201675569 creator A5033486904 @default.
- W3201675569 creator A5062819479 @default.
- W3201675569 creator A5078433539 @default.
- W3201675569 creator A5079932319 @default.
- W3201675569 creator A5089625193 @default.
- W3201675569 date "2022-01-01" @default.
- W3201675569 modified "2023-10-12" @default.
- W3201675569 title "Data Analytics for the Identification of Fake Reviews Using Supervised Learning" @default.
- W3201675569 cites W1450206153 @default.
- W3201675569 cites W1851422430 @default.
- W3201675569 cites W1977764012 @default.
- W3201675569 cites W2110357431 @default.
- W3201675569 cites W2554367394 @default.
- W3201675569 cites W2591945600 @default.
- W3201675569 cites W2616867322 @default.
- W3201675569 cites W2778443828 @default.
- W3201675569 cites W2891412904 @default.
- W3201675569 cites W2921404976 @default.
- W3201675569 cites W2973946059 @default.
- W3201675569 cites W3003892205 @default.
- W3201675569 cites W3011436912 @default.
- W3201675569 cites W3124804010 @default.
- W3201675569 cites W3153282605 @default.
- W3201675569 cites W965920791 @default.
- W3201675569 doi "https://doi.org/10.32604/cmc.2022.019625" @default.
- W3201675569 hasPublicationYear "2022" @default.
- W3201675569 type Work @default.
- W3201675569 sameAs 3201675569 @default.
- W3201675569 citedByCount "108" @default.
- W3201675569 countsByYear W32016755692022 @default.
- W3201675569 countsByYear W32016755692023 @default.
- W3201675569 crossrefType "journal-article" @default.
- W3201675569 hasAuthorship W3201675569A5001028437 @default.
- W3201675569 hasAuthorship W3201675569A5026937315 @default.
- W3201675569 hasAuthorship W3201675569A5033486904 @default.
- W3201675569 hasAuthorship W3201675569A5062819479 @default.
- W3201675569 hasAuthorship W3201675569A5078433539 @default.
- W3201675569 hasAuthorship W3201675569A5079932319 @default.
- W3201675569 hasAuthorship W3201675569A5089625193 @default.
- W3201675569 hasBestOaLocation W32016755691 @default.
- W3201675569 hasConcept C116834253 @default.
- W3201675569 hasConcept C119857082 @default.
- W3201675569 hasConcept C12267149 @default.
- W3201675569 hasConcept C144024400 @default.
- W3201675569 hasConcept C144133560 @default.
- W3201675569 hasConcept C154945302 @default.
- W3201675569 hasConcept C162853370 @default.
- W3201675569 hasConcept C169258074 @default.
- W3201675569 hasConcept C2524010 @default.
- W3201675569 hasConcept C2778813691 @default.
- W3201675569 hasConcept C33923547 @default.
- W3201675569 hasConcept C34736171 @default.
- W3201675569 hasConcept C36289849 @default.
- W3201675569 hasConcept C41008148 @default.
- W3201675569 hasConcept C48798503 @default.
- W3201675569 hasConcept C52001869 @default.
- W3201675569 hasConcept C59822182 @default.
- W3201675569 hasConcept C66402592 @default.
- W3201675569 hasConcept C86803240 @default.
- W3201675569 hasConcept C90673727 @default.
- W3201675569 hasConceptScore W3201675569C116834253 @default.
- W3201675569 hasConceptScore W3201675569C119857082 @default.
- W3201675569 hasConceptScore W3201675569C12267149 @default.
- W3201675569 hasConceptScore W3201675569C144024400 @default.
- W3201675569 hasConceptScore W3201675569C144133560 @default.
- W3201675569 hasConceptScore W3201675569C154945302 @default.
- W3201675569 hasConceptScore W3201675569C162853370 @default.
- W3201675569 hasConceptScore W3201675569C169258074 @default.
- W3201675569 hasConceptScore W3201675569C2524010 @default.
- W3201675569 hasConceptScore W3201675569C2778813691 @default.
- W3201675569 hasConceptScore W3201675569C33923547 @default.
- W3201675569 hasConceptScore W3201675569C34736171 @default.
- W3201675569 hasConceptScore W3201675569C36289849 @default.
- W3201675569 hasConceptScore W3201675569C41008148 @default.
- W3201675569 hasConceptScore W3201675569C48798503 @default.
- W3201675569 hasConceptScore W3201675569C52001869 @default.
- W3201675569 hasConceptScore W3201675569C59822182 @default.
- W3201675569 hasConceptScore W3201675569C66402592 @default.
- W3201675569 hasConceptScore W3201675569C86803240 @default.
- W3201675569 hasConceptScore W3201675569C90673727 @default.
- W3201675569 hasIssue "2" @default.
- W3201675569 hasLocation W32016755691 @default.
- W3201675569 hasOpenAccess W3201675569 @default.
- W3201675569 hasPrimaryLocation W32016755691 @default.
- W3201675569 hasRelatedWork W2985924212 @default.
- W3201675569 hasRelatedWork W3168994312 @default.
- W3201675569 hasRelatedWork W3194769548 @default.
- W3201675569 hasRelatedWork W3195168932 @default.
- W3201675569 hasRelatedWork W4221021152 @default.
- W3201675569 hasRelatedWork W4226158787 @default.
- W3201675569 hasRelatedWork W4226485841 @default.
- W3201675569 hasRelatedWork W4312632137 @default.
- W3201675569 hasRelatedWork W4377964522 @default.
- W3201675569 hasRelatedWork W4384345534 @default.