Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201675643> ?p ?o ?g. }
- W3201675643 endingPage "107918" @default.
- W3201675643 startingPage "107918" @default.
- W3201675643 abstract "Auto-detection of diseases has become a prime issue in medical sciences as population density is fast growing. An intelligent framework for disease detection helps physicians identify illnesses, give reliable and consistent results, and reduce death rates. Coronavirus (Covid-19) has recently been one of the most severe and acute diseases in the world. An automatic detection framework should therefore be introduced as the fastest diagnostic alternative to avoid Covid-19 spread. In this paper, an automatic Covid-19 identification in the CT scan and chest X-ray is obtained with the help of a combined deep learning and multi-level feature extraction methodology. In this method, the multi-level feature extraction approach comprises GIST, Scale Invariant Feature Transform (SIFT), and Convolutional Neural Network (CNN) extract features from CT scans and chest X-rays. The objective of multi-level feature extraction is to reduce the training complexity of CNN network, which significantly assists in accurate and robust Covid-19 identification. Finally, Long Short-Term Memory (LSTM) along the CNN network is used to detect the extracted Covid-19 features. The Kaggle SARS-CoV-2 CT scan dataset and the Italian SIRM Covid-19 CT scan and chest X-ray dataset were employed for testing purposes. Experimental outcomes show that proposed approach obtained 98.94% accuracy with the SARS-CoV-2 CT scan dataset and 83.03% accuracy with the SIRM Covid-19 CT scan and chest X-ray dataset. The proposed approach helps radiologists and practitioners to detect and treat Covid-19 cases effectively over the pandemic." @default.
- W3201675643 created "2021-10-11" @default.
- W3201675643 creator A5068739772 @default.
- W3201675643 creator A5089120548 @default.
- W3201675643 date "2021-12-01" @default.
- W3201675643 modified "2023-10-16" @default.
- W3201675643 title "A CNN-LSTM network with multi-level feature extraction-based approach for automated detection of coronavirus from CT scan and X-ray images" @default.
- W3201675643 cites W1989080406 @default.
- W3201675643 cites W2049832492 @default.
- W3201675643 cites W2119605622 @default.
- W3201675643 cites W2565316834 @default.
- W3201675643 cites W2610859693 @default.
- W3201675643 cites W2746122193 @default.
- W3201675643 cites W2761974878 @default.
- W3201675643 cites W2787667267 @default.
- W3201675643 cites W2800884944 @default.
- W3201675643 cites W2807818182 @default.
- W3201675643 cites W2893960396 @default.
- W3201675643 cites W2897821359 @default.
- W3201675643 cites W2905721492 @default.
- W3201675643 cites W2909763647 @default.
- W3201675643 cites W2917967053 @default.
- W3201675643 cites W2936512185 @default.
- W3201675643 cites W2942810189 @default.
- W3201675643 cites W3001118548 @default.
- W3201675643 cites W3003617865 @default.
- W3201675643 cites W3006110666 @default.
- W3201675643 cites W3008550610 @default.
- W3201675643 cites W3010604545 @default.
- W3201675643 cites W3010938568 @default.
- W3201675643 cites W3013559402 @default.
- W3201675643 cites W3016766064 @default.
- W3201675643 cites W3017403618 @default.
- W3201675643 cites W3027764902 @default.
- W3201675643 cites W3031935524 @default.
- W3201675643 cites W3040660552 @default.
- W3201675643 cites W3042426630 @default.
- W3201675643 cites W3046717168 @default.
- W3201675643 cites W3048828727 @default.
- W3201675643 cites W3086462707 @default.
- W3201675643 cites W3104004606 @default.
- W3201675643 cites W3108897485 @default.
- W3201675643 cites W3133930341 @default.
- W3201675643 cites W4206245015 @default.
- W3201675643 cites W4243509957 @default.
- W3201675643 doi "https://doi.org/10.1016/j.asoc.2021.107918" @default.
- W3201675643 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8482540" @default.
- W3201675643 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34608379" @default.
- W3201675643 hasPublicationYear "2021" @default.
- W3201675643 type Work @default.
- W3201675643 sameAs 3201675643 @default.
- W3201675643 citedByCount "30" @default.
- W3201675643 countsByYear W32016756432022 @default.
- W3201675643 countsByYear W32016756432023 @default.
- W3201675643 crossrefType "journal-article" @default.
- W3201675643 hasAuthorship W3201675643A5068739772 @default.
- W3201675643 hasAuthorship W3201675643A5089120548 @default.
- W3201675643 hasBestOaLocation W32016756431 @default.
- W3201675643 hasConcept C108583219 @default.
- W3201675643 hasConcept C138885662 @default.
- W3201675643 hasConcept C142724271 @default.
- W3201675643 hasConcept C153180895 @default.
- W3201675643 hasConcept C154945302 @default.
- W3201675643 hasConcept C2776401178 @default.
- W3201675643 hasConcept C2779134260 @default.
- W3201675643 hasConcept C3008058167 @default.
- W3201675643 hasConcept C41008148 @default.
- W3201675643 hasConcept C41895202 @default.
- W3201675643 hasConcept C524204448 @default.
- W3201675643 hasConcept C52622490 @default.
- W3201675643 hasConcept C61265191 @default.
- W3201675643 hasConcept C71924100 @default.
- W3201675643 hasConcept C81363708 @default.
- W3201675643 hasConceptScore W3201675643C108583219 @default.
- W3201675643 hasConceptScore W3201675643C138885662 @default.
- W3201675643 hasConceptScore W3201675643C142724271 @default.
- W3201675643 hasConceptScore W3201675643C153180895 @default.
- W3201675643 hasConceptScore W3201675643C154945302 @default.
- W3201675643 hasConceptScore W3201675643C2776401178 @default.
- W3201675643 hasConceptScore W3201675643C2779134260 @default.
- W3201675643 hasConceptScore W3201675643C3008058167 @default.
- W3201675643 hasConceptScore W3201675643C41008148 @default.
- W3201675643 hasConceptScore W3201675643C41895202 @default.
- W3201675643 hasConceptScore W3201675643C524204448 @default.
- W3201675643 hasConceptScore W3201675643C52622490 @default.
- W3201675643 hasConceptScore W3201675643C61265191 @default.
- W3201675643 hasConceptScore W3201675643C71924100 @default.
- W3201675643 hasConceptScore W3201675643C81363708 @default.
- W3201675643 hasLocation W32016756431 @default.
- W3201675643 hasLocation W32016756432 @default.
- W3201675643 hasLocation W32016756433 @default.
- W3201675643 hasLocation W32016756434 @default.
- W3201675643 hasOpenAccess W3201675643 @default.
- W3201675643 hasPrimaryLocation W32016756431 @default.
- W3201675643 hasRelatedWork W2279398222 @default.
- W3201675643 hasRelatedWork W2546942002 @default.
- W3201675643 hasRelatedWork W2602506882 @default.
- W3201675643 hasRelatedWork W2736911226 @default.