Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201700496> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3201700496 abstract "Liver cancer remains the leading cause of cancer death globally, and the treatment strategies are distinct for each type of malignant hepatic tumors. However, the differential diagnosis before surgery is challenging and subjective. This study aims to build an automatic diagnostic model for differentiating malignant hepatic tumors based on patients' multimodal medical data including multi-phase contrast-enhanced computed tomography and clinical features.Our study consisted of 723 patients from two centers, who were pathologically diagnosed with HCC, ICC or metastatic liver cancer. The training set and the test set consisted of 499 and 113 patients from center 1, respectively. The external test set consisted of 111 patients from center 2. We proposed a deep learning model with the modular design of SpatialExtractor-TemporalEncoder-Integration-Classifier (STIC), which take the advantage of deep CNN and gated RNN to effectively extract and integrate the diagnosis-related radiological and clinical features of patients. The code is publicly available at https://github.com/ruitian-olivia/STIC-model .The STIC model achieved an accuracy of 86.2% and AUC of 0.893 for classifying HCC and ICC on the test set. When extended to differential diagnosis of malignant hepatic tumors, the STIC model achieved an accuracy of 72.6% on the test set, comparable with the diagnostic level of doctors' consensus (70.8%). With the assistance of the STIC model, doctors achieved better performance than doctors' consensus diagnosis, with an increase of 8.3% in accuracy and 26.9% in sensitivity for ICC diagnosis on average. On the external test set from center 2, the STIC model achieved an accuracy of 82.9%, which verify the model's generalization ability.We incorporated deep CNN and gated RNN in the STIC model design for differentiating malignant hepatic tumors based on multi-phase CECT and clinical features. Our model can assist doctors to achieve better diagnostic performance, which is expected to serve as an AI assistance system and promote the precise treatment of liver cancer." @default.
- W3201700496 created "2021-10-11" @default.
- W3201700496 creator A5005888513 @default.
- W3201700496 creator A5032764121 @default.
- W3201700496 creator A5047020466 @default.
- W3201700496 creator A5051093403 @default.
- W3201700496 creator A5054773427 @default.
- W3201700496 creator A5055646953 @default.
- W3201700496 creator A5057767596 @default.
- W3201700496 creator A5060061018 @default.
- W3201700496 creator A5070850713 @default.
- W3201700496 creator A5073855399 @default.
- W3201700496 creator A5075013851 @default.
- W3201700496 creator A5078699661 @default.
- W3201700496 creator A5086936559 @default.
- W3201700496 creator A5087567274 @default.
- W3201700496 creator A5090012174 @default.
- W3201700496 date "2021-09-26" @default.
- W3201700496 modified "2023-10-17" @default.
- W3201700496 title "Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data" @default.
- W3201700496 cites W2765571304 @default.
- W3201700496 cites W2782567045 @default.
- W3201700496 cites W2915063034 @default.
- W3201700496 cites W2969542839 @default.
- W3201700496 cites W2980021232 @default.
- W3201700496 cites W2999417355 @default.
- W3201700496 cites W3043549025 @default.
- W3201700496 cites W3048452176 @default.
- W3201700496 cites W3128646645 @default.
- W3201700496 doi "https://doi.org/10.1186/s13045-021-01167-2" @default.
- W3201700496 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8474892" @default.
- W3201700496 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34565412" @default.
- W3201700496 hasPublicationYear "2021" @default.
- W3201700496 type Work @default.
- W3201700496 sameAs 3201700496 @default.
- W3201700496 citedByCount "31" @default.
- W3201700496 countsByYear W32017004962022 @default.
- W3201700496 countsByYear W32017004962023 @default.
- W3201700496 crossrefType "journal-article" @default.
- W3201700496 hasAuthorship W3201700496A5005888513 @default.
- W3201700496 hasAuthorship W3201700496A5032764121 @default.
- W3201700496 hasAuthorship W3201700496A5047020466 @default.
- W3201700496 hasAuthorship W3201700496A5051093403 @default.
- W3201700496 hasAuthorship W3201700496A5054773427 @default.
- W3201700496 hasAuthorship W3201700496A5055646953 @default.
- W3201700496 hasAuthorship W3201700496A5057767596 @default.
- W3201700496 hasAuthorship W3201700496A5060061018 @default.
- W3201700496 hasAuthorship W3201700496A5070850713 @default.
- W3201700496 hasAuthorship W3201700496A5073855399 @default.
- W3201700496 hasAuthorship W3201700496A5075013851 @default.
- W3201700496 hasAuthorship W3201700496A5078699661 @default.
- W3201700496 hasAuthorship W3201700496A5086936559 @default.
- W3201700496 hasAuthorship W3201700496A5087567274 @default.
- W3201700496 hasAuthorship W3201700496A5090012174 @default.
- W3201700496 hasBestOaLocation W32017004961 @default.
- W3201700496 hasConcept C126322002 @default.
- W3201700496 hasConcept C126838900 @default.
- W3201700496 hasConcept C142724271 @default.
- W3201700496 hasConcept C2780801072 @default.
- W3201700496 hasConcept C71924100 @default.
- W3201700496 hasConceptScore W3201700496C126322002 @default.
- W3201700496 hasConceptScore W3201700496C126838900 @default.
- W3201700496 hasConceptScore W3201700496C142724271 @default.
- W3201700496 hasConceptScore W3201700496C2780801072 @default.
- W3201700496 hasConceptScore W3201700496C71924100 @default.
- W3201700496 hasFunder F4320321001 @default.
- W3201700496 hasIssue "1" @default.
- W3201700496 hasLocation W32017004961 @default.
- W3201700496 hasLocation W32017004962 @default.
- W3201700496 hasLocation W32017004963 @default.
- W3201700496 hasLocation W32017004964 @default.
- W3201700496 hasLocation W32017004965 @default.
- W3201700496 hasOpenAccess W3201700496 @default.
- W3201700496 hasPrimaryLocation W32017004961 @default.
- W3201700496 hasRelatedWork W141524600 @default.
- W3201700496 hasRelatedWork W1754602832 @default.
- W3201700496 hasRelatedWork W1841185769 @default.
- W3201700496 hasRelatedWork W1986465740 @default.
- W3201700496 hasRelatedWork W2049214470 @default.
- W3201700496 hasRelatedWork W2072926321 @default.
- W3201700496 hasRelatedWork W2155887765 @default.
- W3201700496 hasRelatedWork W2373049717 @default.
- W3201700496 hasRelatedWork W2902148150 @default.
- W3201700496 hasRelatedWork W4231823197 @default.
- W3201700496 hasVolume "14" @default.
- W3201700496 isParatext "false" @default.
- W3201700496 isRetracted "false" @default.
- W3201700496 magId "3201700496" @default.
- W3201700496 workType "article" @default.