Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201718073> ?p ?o ?g. }
- W3201718073 endingPage "507" @default.
- W3201718073 startingPage "497" @default.
- W3201718073 abstract "White matter fiber clustering (WMFC) enables parcellation of white matter tractography for applications such as disease classification and anatomical tract segmentation. However, the lack of ground truth and the ambiguity of fiber data (the points along a fiber can equivalently be represented in forward or reverse order) pose challenges to this task. We propose a novel WMFC framework based on unsupervised deep learning. We solve the unsupervised clustering problem as a self-supervised learning task. Specifically, we use a convolutional neural network to learn embeddings of input fibers, using pairwise fiber distances as pseudo annotations. This enables WMFC that is insensitive to fiber point ordering. In addition, anatomical coherence of fiber clusters is improved by incorporating brain anatomical segmentation data. The proposed framework enables outlier removal in a natural way by rejecting fibers with low cluster assignment probability. We train and evaluate our method using 200 datasets from the Human Connectome Project. Results demonstrate superior performance and efficiency of the proposed approach." @default.
- W3201718073 created "2021-10-11" @default.
- W3201718073 creator A5009965853 @default.
- W3201718073 creator A5012499268 @default.
- W3201718073 creator A5025758534 @default.
- W3201718073 creator A5037057278 @default.
- W3201718073 creator A5041567418 @default.
- W3201718073 creator A5076697411 @default.
- W3201718073 creator A5080719369 @default.
- W3201718073 creator A5082042615 @default.
- W3201718073 date "2021-01-01" @default.
- W3201718073 modified "2023-10-16" @default.
- W3201718073 title "Deep Fiber Clustering: Anatomically Informed Unsupervised Deep Learning for Fast and Effective White Matter Parcellation" @default.
- W3201718073 cites W1128809682 @default.
- W3201718073 cites W1840855560 @default.
- W3201718073 cites W1843611896 @default.
- W3201718073 cites W1964802316 @default.
- W3201718073 cites W1965173583 @default.
- W3201718073 cites W1993003146 @default.
- W3201718073 cites W2016086132 @default.
- W3201718073 cites W2024729467 @default.
- W3201718073 cites W2130199747 @default.
- W3201718073 cites W2142900310 @default.
- W3201718073 cites W2145888803 @default.
- W3201718073 cites W2207252094 @default.
- W3201718073 cites W2405933695 @default.
- W3201718073 cites W2551620403 @default.
- W3201718073 cites W2765741717 @default.
- W3201718073 cites W2766098209 @default.
- W3201718073 cites W2766300864 @default.
- W3201718073 cites W2766639217 @default.
- W3201718073 cites W2766757717 @default.
- W3201718073 cites W2803837136 @default.
- W3201718073 cites W2803890652 @default.
- W3201718073 cites W2808875895 @default.
- W3201718073 cites W2883725317 @default.
- W3201718073 cites W2913939497 @default.
- W3201718073 cites W2950390549 @default.
- W3201718073 cites W2962852342 @default.
- W3201718073 cites W3013280574 @default.
- W3201718073 cites W3036595745 @default.
- W3201718073 cites W3037207981 @default.
- W3201718073 cites W3082281528 @default.
- W3201718073 cites W3091671559 @default.
- W3201718073 cites W3096100444 @default.
- W3201718073 cites W343636949 @default.
- W3201718073 cites W4241074797 @default.
- W3201718073 cites W88165185 @default.
- W3201718073 doi "https://doi.org/10.1007/978-3-030-87234-2_47" @default.
- W3201718073 hasPublicationYear "2021" @default.
- W3201718073 type Work @default.
- W3201718073 sameAs 3201718073 @default.
- W3201718073 citedByCount "8" @default.
- W3201718073 countsByYear W32017180732022 @default.
- W3201718073 countsByYear W32017180732023 @default.
- W3201718073 crossrefType "book-chapter" @default.
- W3201718073 hasAuthorship W3201718073A5009965853 @default.
- W3201718073 hasAuthorship W3201718073A5012499268 @default.
- W3201718073 hasAuthorship W3201718073A5025758534 @default.
- W3201718073 hasAuthorship W3201718073A5037057278 @default.
- W3201718073 hasAuthorship W3201718073A5041567418 @default.
- W3201718073 hasAuthorship W3201718073A5076697411 @default.
- W3201718073 hasAuthorship W3201718073A5080719369 @default.
- W3201718073 hasAuthorship W3201718073A5082042615 @default.
- W3201718073 hasBestOaLocation W32017180732 @default.
- W3201718073 hasConcept C108583219 @default.
- W3201718073 hasConcept C146849305 @default.
- W3201718073 hasConcept C153180895 @default.
- W3201718073 hasConcept C154945302 @default.
- W3201718073 hasConcept C178790620 @default.
- W3201718073 hasConcept C184898388 @default.
- W3201718073 hasConcept C185592680 @default.
- W3201718073 hasConcept C41008148 @default.
- W3201718073 hasConcept C519885992 @default.
- W3201718073 hasConcept C73555534 @default.
- W3201718073 hasConcept C79337645 @default.
- W3201718073 hasConcept C8038995 @default.
- W3201718073 hasConcept C81363708 @default.
- W3201718073 hasConcept C89600930 @default.
- W3201718073 hasConceptScore W3201718073C108583219 @default.
- W3201718073 hasConceptScore W3201718073C146849305 @default.
- W3201718073 hasConceptScore W3201718073C153180895 @default.
- W3201718073 hasConceptScore W3201718073C154945302 @default.
- W3201718073 hasConceptScore W3201718073C178790620 @default.
- W3201718073 hasConceptScore W3201718073C184898388 @default.
- W3201718073 hasConceptScore W3201718073C185592680 @default.
- W3201718073 hasConceptScore W3201718073C41008148 @default.
- W3201718073 hasConceptScore W3201718073C519885992 @default.
- W3201718073 hasConceptScore W3201718073C73555534 @default.
- W3201718073 hasConceptScore W3201718073C79337645 @default.
- W3201718073 hasConceptScore W3201718073C8038995 @default.
- W3201718073 hasConceptScore W3201718073C81363708 @default.
- W3201718073 hasConceptScore W3201718073C89600930 @default.
- W3201718073 hasLocation W32017180731 @default.
- W3201718073 hasLocation W32017180732 @default.
- W3201718073 hasOpenAccess W3201718073 @default.
- W3201718073 hasPrimaryLocation W32017180731 @default.
- W3201718073 hasRelatedWork W1692008701 @default.