Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201734156> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3201734156 abstract "Abstract Objectives The purpose of this study was to assess the effectiveness of monitoring professional female dancer health with a variety of subjective and objective monitoring methods, including application of artificial intelligence (AI) techniques to modelling menstrual cycle hormones and delivering swift personalised clinical advice. Methods Female dancers from a ballet company completed a published online dance-specific health questionnaire. Over the study period, dancers recorded wellbeing and training metrics, with menstrual cycle tracking and blood tests. For menstrual cycle hormones AI-based techniques modelled hormone variation over a cycle, based on capillary blood samples taken at two time points. At regular, virtual, clinical interviews with each dancer, findings were discussed, and personalised advice given. Results 14 female dancers (mean age 25.5 years, SD 3.7) participated in the study. 10 dancers recorded positive scores on the dance health questionnaire, suggesting a low risk of relative energy deficiency in sport (RED-S). 2 dancers were taking hormonal contraception. Apart from 1 dancer, those not on hormonal contraception reported current eumenorrhoeic status. The initiative of monitoring menstrual cycles and application of AI to model menstrual cycle hormones found that subclinical hormone disruption was occurring in 6 of the 10 dancers reporting regular cycles. 4 of the 6 dancers who received personalised advice, showed improved menstrual hormone function, including one dancer who had planned pregnancy. Conclusions Multimodal monitoring facilitated delivery of prompt personalised clinical medical feedback specific for dance. This strategy enabled the early identification and swift management of emergent clinical issues. These innovations received positive feedback from the dancers." @default.
- W3201734156 created "2021-10-11" @default.
- W3201734156 creator A5041689776 @default.
- W3201734156 creator A5074721493 @default.
- W3201734156 creator A5017023125 @default.
- W3201734156 date "2021-09-29" @default.
- W3201734156 modified "2023-10-16" @default.
- W3201734156 title "Clinical application of monitoring indicators of female dancer health, including application of artificial intelligence in female hormone networks" @default.
- W3201734156 cites W2057490855 @default.
- W3201734156 cites W2079217417 @default.
- W3201734156 cites W2097235025 @default.
- W3201734156 cites W2124372891 @default.
- W3201734156 cites W2157129285 @default.
- W3201734156 cites W2803329575 @default.
- W3201734156 cites W2895066480 @default.
- W3201734156 cites W2927316373 @default.
- W3201734156 cites W3022089061 @default.
- W3201734156 cites W3108220716 @default.
- W3201734156 cites W3123117041 @default.
- W3201734156 cites W3139956251 @default.
- W3201734156 cites W3173850147 @default.
- W3201734156 cites W3175030175 @default.
- W3201734156 cites W5469081 @default.
- W3201734156 doi "https://doi.org/10.1101/2021.09.27.21264119" @default.
- W3201734156 hasPublicationYear "2021" @default.
- W3201734156 type Work @default.
- W3201734156 sameAs 3201734156 @default.
- W3201734156 citedByCount "1" @default.
- W3201734156 countsByYear W32017341562021 @default.
- W3201734156 crossrefType "posted-content" @default.
- W3201734156 hasAuthorship W3201734156A5017023125 @default.
- W3201734156 hasAuthorship W3201734156A5041689776 @default.
- W3201734156 hasAuthorship W3201734156A5074721493 @default.
- W3201734156 hasBestOaLocation W32017341561 @default.
- W3201734156 hasConcept C124952713 @default.
- W3201734156 hasConcept C126322002 @default.
- W3201734156 hasConcept C142362112 @default.
- W3201734156 hasConcept C147446459 @default.
- W3201734156 hasConcept C15744967 @default.
- W3201734156 hasConcept C1862650 @default.
- W3201734156 hasConcept C2779058012 @default.
- W3201734156 hasConcept C29456083 @default.
- W3201734156 hasConcept C71315377 @default.
- W3201734156 hasConcept C71924100 @default.
- W3201734156 hasConceptScore W3201734156C124952713 @default.
- W3201734156 hasConceptScore W3201734156C126322002 @default.
- W3201734156 hasConceptScore W3201734156C142362112 @default.
- W3201734156 hasConceptScore W3201734156C147446459 @default.
- W3201734156 hasConceptScore W3201734156C15744967 @default.
- W3201734156 hasConceptScore W3201734156C1862650 @default.
- W3201734156 hasConceptScore W3201734156C2779058012 @default.
- W3201734156 hasConceptScore W3201734156C29456083 @default.
- W3201734156 hasConceptScore W3201734156C71315377 @default.
- W3201734156 hasConceptScore W3201734156C71924100 @default.
- W3201734156 hasLocation W32017341561 @default.
- W3201734156 hasOpenAccess W3201734156 @default.
- W3201734156 hasPrimaryLocation W32017341561 @default.
- W3201734156 hasRelatedWork W1999344589 @default.
- W3201734156 hasRelatedWork W2024800175 @default.
- W3201734156 hasRelatedWork W2056190560 @default.
- W3201734156 hasRelatedWork W2419154205 @default.
- W3201734156 hasRelatedWork W2748952813 @default.
- W3201734156 hasRelatedWork W2789448498 @default.
- W3201734156 hasRelatedWork W2899084033 @default.
- W3201734156 hasRelatedWork W2993946895 @default.
- W3201734156 hasRelatedWork W2999689638 @default.
- W3201734156 hasRelatedWork W3168444503 @default.
- W3201734156 isParatext "false" @default.
- W3201734156 isRetracted "false" @default.
- W3201734156 magId "3201734156" @default.
- W3201734156 workType "article" @default.