Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201737800> ?p ?o ?g. }
- W3201737800 abstract "The productivity analysis of cable crane transportation in the construction field is of great significance to improve crane equipment management and reduce operation costs. However, the traditional manual recording method of analyzing cable crane productivity is time-consuming and tedious. The existing vision-based method requires significant amounts of time to collect extensive images at construction sites and does not achieve high-precision detection in complex scenes. Thus, an automated vision-based method for productivity analysis of cable crane transportation is proposed using a new synthetic image approach based on an augmented reality (AR) technique. The unmanned aerial vehicle-based three-dimensional (3D) reconstruction of a crane bucket model is superimposed on a realistic scene using AR to synthesize the images for vision-based model training without manual image acquisition at a construction site. The feature pyramid network and attention module are integrated into Faster region-based convolutional neural network (Faster R-CNN) to enhance the capability of feature extraction for the high-precision detection of a crane bucket and its ID number, which provides the logical basis for calculating productivity. The proposed vision-based productivity analysis method is evaluated on large-scale hydraulic engineering. The results demonstrate that the mean average precision (mAP) of detection performance is 98.01% using the model trained by AR-based synthetic images, which confirms the proposed AR-based synthetic image method could provide a new image generation mode for the construction industry. Additionally, the bias of productivity between the proposed method and ground truth is 0.03%, which confirms the effectiveness and accuracy of the proposed method." @default.
- W3201737800 created "2021-10-11" @default.
- W3201737800 creator A5015378757 @default.
- W3201737800 creator A5017557616 @default.
- W3201737800 creator A5024759641 @default.
- W3201737800 creator A5041226202 @default.
- W3201737800 creator A5066195168 @default.
- W3201737800 creator A5068198508 @default.
- W3201737800 creator A5071817596 @default.
- W3201737800 date "2022-01-01" @default.
- W3201737800 modified "2023-10-14" @default.
- W3201737800 title "Vision-Based Productivity Analysis of Cable Crane Transportation Using Augmented Reality–Based Synthetic Image" @default.
- W3201737800 cites W1861492603 @default.
- W3201737800 cites W1983902753 @default.
- W3201737800 cites W2002844166 @default.
- W3201737800 cites W2008706659 @default.
- W3201737800 cites W2012657274 @default.
- W3201737800 cites W2031067250 @default.
- W3201737800 cites W2031489346 @default.
- W3201737800 cites W2036695573 @default.
- W3201737800 cites W2055431462 @default.
- W3201737800 cites W2105303354 @default.
- W3201737800 cites W2111361244 @default.
- W3201737800 cites W2122122381 @default.
- W3201737800 cites W2179859129 @default.
- W3201737800 cites W2314662668 @default.
- W3201737800 cites W2333379694 @default.
- W3201737800 cites W2533943220 @default.
- W3201737800 cites W2565639579 @default.
- W3201737800 cites W2592583962 @default.
- W3201737800 cites W2748643398 @default.
- W3201737800 cites W2772016598 @default.
- W3201737800 cites W2781513064 @default.
- W3201737800 cites W2781682874 @default.
- W3201737800 cites W2790722345 @default.
- W3201737800 cites W2790977031 @default.
- W3201737800 cites W2792511902 @default.
- W3201737800 cites W2802595503 @default.
- W3201737800 cites W2884585870 @default.
- W3201737800 cites W2885207804 @default.
- W3201737800 cites W2900991105 @default.
- W3201737800 cites W2919115771 @default.
- W3201737800 cites W2939539331 @default.
- W3201737800 cites W2945889281 @default.
- W3201737800 cites W2948268290 @default.
- W3201737800 cites W2954350473 @default.
- W3201737800 cites W2963037989 @default.
- W3201737800 cites W2963150697 @default.
- W3201737800 cites W2963351448 @default.
- W3201737800 cites W2966168255 @default.
- W3201737800 cites W2978183057 @default.
- W3201737800 cites W2982284503 @default.
- W3201737800 cites W2982449264 @default.
- W3201737800 cites W2982512126 @default.
- W3201737800 cites W2988250519 @default.
- W3201737800 cites W2994408221 @default.
- W3201737800 cites W2994999390 @default.
- W3201737800 cites W3006320450 @default.
- W3201737800 cites W3013406096 @default.
- W3201737800 cites W3015666110 @default.
- W3201737800 cites W3021221491 @default.
- W3201737800 cites W3024156945 @default.
- W3201737800 cites W3085833930 @default.
- W3201737800 cites W3095719583 @default.
- W3201737800 cites W3097171939 @default.
- W3201737800 cites W3106250896 @default.
- W3201737800 cites W3106586859 @default.
- W3201737800 cites W3106651141 @default.
- W3201737800 cites W3111685113 @default.
- W3201737800 cites W3112798201 @default.
- W3201737800 cites W3112984608 @default.
- W3201737800 cites W3115451856 @default.
- W3201737800 cites W3126375564 @default.
- W3201737800 cites W3126970786 @default.
- W3201737800 cites W3155812415 @default.
- W3201737800 cites W3158248333 @default.
- W3201737800 cites W4254177977 @default.
- W3201737800 doi "https://doi.org/10.1061/(asce)cp.1943-5487.0000994" @default.
- W3201737800 hasPublicationYear "2022" @default.
- W3201737800 type Work @default.
- W3201737800 sameAs 3201737800 @default.
- W3201737800 citedByCount "12" @default.
- W3201737800 countsByYear W32017378002022 @default.
- W3201737800 countsByYear W32017378002023 @default.
- W3201737800 crossrefType "journal-article" @default.
- W3201737800 hasAuthorship W3201737800A5015378757 @default.
- W3201737800 hasAuthorship W3201737800A5017557616 @default.
- W3201737800 hasAuthorship W3201737800A5024759641 @default.
- W3201737800 hasAuthorship W3201737800A5041226202 @default.
- W3201737800 hasAuthorship W3201737800A5066195168 @default.
- W3201737800 hasAuthorship W3201737800A5068198508 @default.
- W3201737800 hasAuthorship W3201737800A5071817596 @default.
- W3201737800 hasConcept C120665830 @default.
- W3201737800 hasConcept C121332964 @default.
- W3201737800 hasConcept C138885662 @default.
- W3201737800 hasConcept C142575187 @default.
- W3201737800 hasConcept C146849305 @default.
- W3201737800 hasConcept C154945302 @default.
- W3201737800 hasConcept C2776401178 @default.
- W3201737800 hasConcept C31972630 @default.