Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201738124> ?p ?o ?g. }
- W3201738124 endingPage "5266" @default.
- W3201738124 startingPage "5253" @default.
- W3201738124 abstract "Abstract Karst rocky desertification is a major ecologic and geologic problem in Southwest China that has restricted the sustainable development of society and the economy. Many methods have been used to evaluate rocky desertification based on satellite remote sensing, but the results of these methods are affected by the heterogeneous surroundings of the karst region and the low resolution of sensors. In this study, a new method that combines satellite images and unmanned aerial vehicle (UAV) images was used to quantitatively extract information and evaluate rocky desertification. First, we extracted the bare rock ratio from the local high‐resolution UAV images, and then the regression models were established between the bare rock ratio of UAV images and the band reflectivity and eight rock indices of satellite images to invert the bare rock ratio at the county scale. The results showed that the overall accuracy and F1 of the classification of UAV images was 97% and 90%, respectively. The linear regression model between the reflectivity of the pixels in band 2 of the LANDSAT image and the bare rock ratio extracted from the UAV images was the best (R 2 = 0.86). In addition, our method in which rocky desertification was assessed by the inversion model based on UAV images and LANDSAT images was superior to the traditional approach based on vegetation coverage. These results suggested that we can extract information on rocky desertification based on high‐resolution UAV images and assess rocky desertification by the inversion model from the local to regional scale." @default.
- W3201738124 created "2021-10-11" @default.
- W3201738124 creator A5004801354 @default.
- W3201738124 creator A5007082661 @default.
- W3201738124 creator A5007264715 @default.
- W3201738124 creator A5009033053 @default.
- W3201738124 creator A5026573236 @default.
- W3201738124 creator A5036761511 @default.
- W3201738124 creator A5055494691 @default.
- W3201738124 creator A5075119349 @default.
- W3201738124 creator A5080521624 @default.
- W3201738124 date "2021-10-18" @default.
- W3201738124 modified "2023-10-11" @default.
- W3201738124 title "Assessment of karst rocky desertification from the local to regional scale based on unmanned aerial vehicle images: A case‐study of Shilin County, Yunnan Province, China" @default.
- W3201738124 cites W1522525389 @default.
- W3201738124 cites W1553013464 @default.
- W3201738124 cites W1962677083 @default.
- W3201738124 cites W1973576742 @default.
- W3201738124 cites W1978487267 @default.
- W3201738124 cites W1981527205 @default.
- W3201738124 cites W1984580108 @default.
- W3201738124 cites W1986738039 @default.
- W3201738124 cites W1986843499 @default.
- W3201738124 cites W2005932078 @default.
- W3201738124 cites W2015827117 @default.
- W3201738124 cites W2039612012 @default.
- W3201738124 cites W2040168070 @default.
- W3201738124 cites W2084729856 @default.
- W3201738124 cites W2101424567 @default.
- W3201738124 cites W2102287880 @default.
- W3201738124 cites W2119879130 @default.
- W3201738124 cites W2123061447 @default.
- W3201738124 cites W2136253503 @default.
- W3201738124 cites W2138973222 @default.
- W3201738124 cites W2145752458 @default.
- W3201738124 cites W2152334070 @default.
- W3201738124 cites W2166917517 @default.
- W3201738124 cites W2176673053 @default.
- W3201738124 cites W2287714391 @default.
- W3201738124 cites W2556348469 @default.
- W3201738124 cites W2607344103 @default.
- W3201738124 cites W2744006224 @default.
- W3201738124 cites W2748127925 @default.
- W3201738124 cites W2779326439 @default.
- W3201738124 cites W2784201940 @default.
- W3201738124 cites W2793330122 @default.
- W3201738124 cites W2807123892 @default.
- W3201738124 cites W2839402243 @default.
- W3201738124 cites W2888501743 @default.
- W3201738124 cites W2898751229 @default.
- W3201738124 cites W2901557046 @default.
- W3201738124 cites W2926611753 @default.
- W3201738124 cites W2950604226 @default.
- W3201738124 cites W2963771652 @default.
- W3201738124 cites W2972023696 @default.
- W3201738124 cites W2974097761 @default.
- W3201738124 cites W2981464168 @default.
- W3201738124 cites W3032187331 @default.
- W3201738124 cites W3093676244 @default.
- W3201738124 cites W3096261963 @default.
- W3201738124 cites W3112078650 @default.
- W3201738124 doi "https://doi.org/10.1002/ldr.4106" @default.
- W3201738124 hasPublicationYear "2021" @default.
- W3201738124 type Work @default.
- W3201738124 sameAs 3201738124 @default.
- W3201738124 citedByCount "6" @default.
- W3201738124 countsByYear W32017381242022 @default.
- W3201738124 countsByYear W32017381242023 @default.
- W3201738124 crossrefType "journal-article" @default.
- W3201738124 hasAuthorship W3201738124A5004801354 @default.
- W3201738124 hasAuthorship W3201738124A5007082661 @default.
- W3201738124 hasAuthorship W3201738124A5007264715 @default.
- W3201738124 hasAuthorship W3201738124A5009033053 @default.
- W3201738124 hasAuthorship W3201738124A5026573236 @default.
- W3201738124 hasAuthorship W3201738124A5036761511 @default.
- W3201738124 hasAuthorship W3201738124A5055494691 @default.
- W3201738124 hasAuthorship W3201738124A5075119349 @default.
- W3201738124 hasAuthorship W3201738124A5080521624 @default.
- W3201738124 hasConcept C100970517 @default.
- W3201738124 hasConcept C109007969 @default.
- W3201738124 hasConcept C114793014 @default.
- W3201738124 hasConcept C127313418 @default.
- W3201738124 hasConcept C127413603 @default.
- W3201738124 hasConcept C142724271 @default.
- W3201738124 hasConcept C146978453 @default.
- W3201738124 hasConcept C151730666 @default.
- W3201738124 hasConcept C182348080 @default.
- W3201738124 hasConcept C18903297 @default.
- W3201738124 hasConcept C1893757 @default.
- W3201738124 hasConcept C19269812 @default.
- W3201738124 hasConcept C205649164 @default.
- W3201738124 hasConcept C2776133958 @default.
- W3201738124 hasConcept C2778102629 @default.
- W3201738124 hasConcept C2778755073 @default.
- W3201738124 hasConcept C33559203 @default.
- W3201738124 hasConcept C39432304 @default.
- W3201738124 hasConcept C58640448 @default.
- W3201738124 hasConcept C62649853 @default.