Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201740726> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W3201740726 endingPage "204" @default.
- W3201740726 startingPage "195" @default.
- W3201740726 abstract "Detecting the airway anomaly can be an essential part to aid the lung disease diagnosis. Since normal human airways share an anatomical structure, we design a graph prototype whose structure follows the normal airway anatomy. Then, we learn the prototype and a graph neural network from a weakly-supervised airway dataset, i.e., only the holistic label is available, indicating if the airway has anomaly or not, but which bronchus node has the anomaly is unknown. During inference, the graph neural network predicts the anomaly score at both the holistic level and node-level of an airway. We initialize the airway anomaly detection problem by creating a large airway dataset with 2589 samples, and our prototype-based graph neural network shows high sensitivity and specificity on this new benchmark dataset. The code is available at https://github.com/tznbz/Airway-Anomaly-Detection-by-Prototype-based-Graph-Neural-Network." @default.
- W3201740726 created "2021-10-11" @default.
- W3201740726 creator A5051004995 @default.
- W3201740726 creator A5080054465 @default.
- W3201740726 date "2021-01-01" @default.
- W3201740726 modified "2023-09-27" @default.
- W3201740726 title "Airway Anomaly Detection by Prototype-Based Graph Neural Network" @default.
- W3201740726 cites W1986649315 @default.
- W3201740726 cites W2083927153 @default.
- W3201740726 cites W2302770900 @default.
- W3201740726 cites W2626997132 @default.
- W3201740726 cites W2751998826 @default.
- W3201740726 cites W2753797478 @default.
- W3201740726 cites W2805851535 @default.
- W3201740726 cites W2885818977 @default.
- W3201740726 cites W2889625178 @default.
- W3201740726 cites W2896620274 @default.
- W3201740726 cites W2962778872 @default.
- W3201740726 cites W2979301493 @default.
- W3201740726 cites W2983288276 @default.
- W3201740726 doi "https://doi.org/10.1007/978-3-030-87240-3_19" @default.
- W3201740726 hasPublicationYear "2021" @default.
- W3201740726 type Work @default.
- W3201740726 sameAs 3201740726 @default.
- W3201740726 citedByCount "0" @default.
- W3201740726 crossrefType "book-chapter" @default.
- W3201740726 hasAuthorship W3201740726A5051004995 @default.
- W3201740726 hasAuthorship W3201740726A5080054465 @default.
- W3201740726 hasConcept C132525143 @default.
- W3201740726 hasConcept C154945302 @default.
- W3201740726 hasConcept C41008148 @default.
- W3201740726 hasConcept C50644808 @default.
- W3201740726 hasConcept C739882 @default.
- W3201740726 hasConcept C80444323 @default.
- W3201740726 hasConceptScore W3201740726C132525143 @default.
- W3201740726 hasConceptScore W3201740726C154945302 @default.
- W3201740726 hasConceptScore W3201740726C41008148 @default.
- W3201740726 hasConceptScore W3201740726C50644808 @default.
- W3201740726 hasConceptScore W3201740726C739882 @default.
- W3201740726 hasConceptScore W3201740726C80444323 @default.
- W3201740726 hasLocation W32017407261 @default.
- W3201740726 hasOpenAccess W3201740726 @default.
- W3201740726 hasPrimaryLocation W32017407261 @default.
- W3201740726 hasRelatedWork W2076520961 @default.
- W3201740726 hasRelatedWork W2182604364 @default.
- W3201740726 hasRelatedWork W2386387936 @default.
- W3201740726 hasRelatedWork W2767431350 @default.
- W3201740726 hasRelatedWork W2769077153 @default.
- W3201740726 hasRelatedWork W2899473595 @default.
- W3201740726 hasRelatedWork W3001020386 @default.
- W3201740726 hasRelatedWork W3107474891 @default.
- W3201740726 hasRelatedWork W644753246 @default.
- W3201740726 hasRelatedWork W1629725936 @default.
- W3201740726 isParatext "false" @default.
- W3201740726 isRetracted "false" @default.
- W3201740726 magId "3201740726" @default.
- W3201740726 workType "book-chapter" @default.