Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201744225> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3201744225 endingPage "6369" @default.
- W3201744225 startingPage "6369" @default.
- W3201744225 abstract "Previous studies have used the anaerobic threshold (AT) to non-invasively predict muscle fatigue. This study proposes a novel method for the automatic classification of muscle fatigue based on surface electromyography (sEMG). The sEMG data were acquired from 20 participants during an incremental test on a cycle ergometer using sEMG sensors placed on the vastus rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), and gastrocnemius (GA) muscles of the left leg. The ventilation volume (VE), oxygen uptake (VO2), and carbon dioxide production (VCO2) data of each participant were collected during the test. Then, we extracted the time-domain and frequency-domain features of the sEMG signal denoised by the improved wavelet packet threshold denoising algorithm. In this study, we propose a new muscle fatigue recognition model based on the long short-term memory (LSTM) network. The LSTM network was trained to classify muscle fatigue using sEMG signal features. The results showed that the improved wavelet packet threshold function has better performance in denoising sEMG signals than hard threshold and soft threshold functions. The classification performance of the muscle fatigue recognition model proposed in this paper is better than that of CNN (convolutional neural network), SVM (support vector machine), and the classification models proposed by other scholars. The best performance of the LSTM network was achieved with 70% training, 10% validation, and 20% testing rates. Generally, the proposed model can be used to monitor muscle fatigue." @default.
- W3201744225 created "2021-10-11" @default.
- W3201744225 creator A5015696685 @default.
- W3201744225 creator A5017179792 @default.
- W3201744225 creator A5036414935 @default.
- W3201744225 date "2021-09-24" @default.
- W3201744225 modified "2023-10-18" @default.
- W3201744225 title "A Muscle Fatigue Classification Model Based on LSTM and Improved Wavelet Packet Threshold" @default.
- W3201744225 cites W1772167134 @default.
- W3201744225 cites W1964126661 @default.
- W3201744225 cites W1973195716 @default.
- W3201744225 cites W1974688913 @default.
- W3201744225 cites W1995211373 @default.
- W3201744225 cites W2046403736 @default.
- W3201744225 cites W2049447155 @default.
- W3201744225 cites W2064675550 @default.
- W3201744225 cites W2076943262 @default.
- W3201744225 cites W2080670264 @default.
- W3201744225 cites W2088499124 @default.
- W3201744225 cites W2103403570 @default.
- W3201744225 cites W2112718015 @default.
- W3201744225 cites W2113816114 @default.
- W3201744225 cites W2128376555 @default.
- W3201744225 cites W2145139856 @default.
- W3201744225 cites W2146842127 @default.
- W3201744225 cites W2155461258 @default.
- W3201744225 cites W2156447271 @default.
- W3201744225 cites W2506098152 @default.
- W3201744225 cites W2620675477 @default.
- W3201744225 cites W2739533455 @default.
- W3201744225 cites W2890837822 @default.
- W3201744225 cites W2912807471 @default.
- W3201744225 cites W2913966298 @default.
- W3201744225 cites W2914752259 @default.
- W3201744225 cites W2982600499 @default.
- W3201744225 cites W3098308927 @default.
- W3201744225 cites W3128400145 @default.
- W3201744225 doi "https://doi.org/10.3390/s21196369" @default.
- W3201744225 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8512101" @default.
- W3201744225 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34640689" @default.
- W3201744225 hasPublicationYear "2021" @default.
- W3201744225 type Work @default.
- W3201744225 sameAs 3201744225 @default.
- W3201744225 citedByCount "10" @default.
- W3201744225 countsByYear W32017442252022 @default.
- W3201744225 countsByYear W32017442252023 @default.
- W3201744225 crossrefType "journal-article" @default.
- W3201744225 hasAuthorship W3201744225A5015696685 @default.
- W3201744225 hasAuthorship W3201744225A5017179792 @default.
- W3201744225 hasAuthorship W3201744225A5036414935 @default.
- W3201744225 hasBestOaLocation W32017442251 @default.
- W3201744225 hasConcept C12267149 @default.
- W3201744225 hasConcept C153180895 @default.
- W3201744225 hasConcept C154945302 @default.
- W3201744225 hasConcept C2776874296 @default.
- W3201744225 hasConcept C2777515770 @default.
- W3201744225 hasConcept C2780993623 @default.
- W3201744225 hasConcept C28490314 @default.
- W3201744225 hasConcept C41008148 @default.
- W3201744225 hasConcept C47432892 @default.
- W3201744225 hasConcept C50644808 @default.
- W3201744225 hasConcept C71924100 @default.
- W3201744225 hasConcept C99508421 @default.
- W3201744225 hasConceptScore W3201744225C12267149 @default.
- W3201744225 hasConceptScore W3201744225C153180895 @default.
- W3201744225 hasConceptScore W3201744225C154945302 @default.
- W3201744225 hasConceptScore W3201744225C2776874296 @default.
- W3201744225 hasConceptScore W3201744225C2777515770 @default.
- W3201744225 hasConceptScore W3201744225C2780993623 @default.
- W3201744225 hasConceptScore W3201744225C28490314 @default.
- W3201744225 hasConceptScore W3201744225C41008148 @default.
- W3201744225 hasConceptScore W3201744225C47432892 @default.
- W3201744225 hasConceptScore W3201744225C50644808 @default.
- W3201744225 hasConceptScore W3201744225C71924100 @default.
- W3201744225 hasConceptScore W3201744225C99508421 @default.
- W3201744225 hasFunder F4320336578 @default.
- W3201744225 hasIssue "19" @default.
- W3201744225 hasLocation W32017442251 @default.
- W3201744225 hasLocation W32017442252 @default.
- W3201744225 hasLocation W32017442253 @default.
- W3201744225 hasOpenAccess W3201744225 @default.
- W3201744225 hasPrimaryLocation W32017442251 @default.
- W3201744225 hasRelatedWork W2041399278 @default.
- W3201744225 hasRelatedWork W2056016498 @default.
- W3201744225 hasRelatedWork W2136184105 @default.
- W3201744225 hasRelatedWork W2336974148 @default.
- W3201744225 hasRelatedWork W2389470892 @default.
- W3201744225 hasRelatedWork W2541950815 @default.
- W3201744225 hasRelatedWork W3013515612 @default.
- W3201744225 hasRelatedWork W4293087713 @default.
- W3201744225 hasRelatedWork W2187500075 @default.
- W3201744225 hasRelatedWork W2345184372 @default.
- W3201744225 hasVolume "21" @default.
- W3201744225 isParatext "false" @default.
- W3201744225 isRetracted "false" @default.
- W3201744225 magId "3201744225" @default.
- W3201744225 workType "article" @default.