Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201769213> ?p ?o ?g. }
- W3201769213 endingPage "124999" @default.
- W3201769213 startingPage "124999" @default.
- W3201769213 abstract "Damage detection in wood materials has numerous applications in different industries, such as construction and forestry. Wood is generally a complex medium due to its orthotropic and random properties, which increases the difficulty of non-destructive damage testing. However, machine learning algorithms can be employed to overcome this problem. In this paper, hole-defect classification problems of two common types of wood materials, namely hard (marbau) and soft (pine) wood, are studied using a naive Bayes classification technique. To this end, the results of contact ultrasonic tests conducted on these types of woods in different directions, i.e. tangential and radial to the growth rings of wood, were investigated. The various states of the intact, small defect, and large defect of each type of wood were considered in the testing regime. It is known that contact ultrasonic tests are highly sensitive to different aspects of the test, such as the amount of couplant gel applied to surfaces, the amount of pressure applied to the transducer and receiver, and misalignment of the transducer and receiver. Therefore, 50 replicates of each test were implemented. First, an advanced signal decomposition algorithm termed Variational Mode Decomposition (VMD) was exploited to derive some features from the recorded ultrasonic signals. Then, the derived features were used in a set of classification problems using a naive Bayes classifier to classify the damage state of the specimens. Different types of naive Bayes classifiers, namely Gaussian and kernel, along with combinations of different types of features were employed to improve the results, ultimately achieving nearly 100% 10-fold cross-validation accuracy in all cases individually. However, when cases from different types of wood and direction of the tests were mixed, 93.6% 10-fold cross-validation accuracy was achieved for the classification problem based on the health state of the cases, using kernel naive Bayes classifier and a mixture of two types of features." @default.
- W3201769213 created "2021-10-11" @default.
- W3201769213 creator A5039341855 @default.
- W3201769213 creator A5047991219 @default.
- W3201769213 date "2021-11-01" @default.
- W3201769213 modified "2023-10-16" @default.
- W3201769213 title "Wood hole-damage detection and classification via contact ultrasonic testing" @default.
- W3201769213 cites W1182431955 @default.
- W3201769213 cites W1976207217 @default.
- W3201769213 cites W1978688409 @default.
- W3201769213 cites W1980484633 @default.
- W3201769213 cites W1998535681 @default.
- W3201769213 cites W2000186221 @default.
- W3201769213 cites W2000982976 @default.
- W3201769213 cites W2004971874 @default.
- W3201769213 cites W2017454686 @default.
- W3201769213 cites W2026222520 @default.
- W3201769213 cites W2044199347 @default.
- W3201769213 cites W2057209438 @default.
- W3201769213 cites W2079446554 @default.
- W3201769213 cites W2093014553 @default.
- W3201769213 cites W2131965052 @default.
- W3201769213 cites W2161030445 @default.
- W3201769213 cites W2273103474 @default.
- W3201769213 cites W2312785220 @default.
- W3201769213 cites W2325779610 @default.
- W3201769213 cites W2465628751 @default.
- W3201769213 cites W2530254150 @default.
- W3201769213 cites W2605132254 @default.
- W3201769213 cites W2766124620 @default.
- W3201769213 cites W2803953022 @default.
- W3201769213 cites W2892462957 @default.
- W3201769213 cites W2892871933 @default.
- W3201769213 cites W2902530064 @default.
- W3201769213 cites W2905659887 @default.
- W3201769213 cites W2954641665 @default.
- W3201769213 cites W2977224613 @default.
- W3201769213 cites W3004211135 @default.
- W3201769213 cites W3005864909 @default.
- W3201769213 cites W3010770867 @default.
- W3201769213 cites W3015243717 @default.
- W3201769213 cites W3027094094 @default.
- W3201769213 cites W3045002989 @default.
- W3201769213 cites W3097740275 @default.
- W3201769213 doi "https://doi.org/10.1016/j.conbuildmat.2021.124999" @default.
- W3201769213 hasPublicationYear "2021" @default.
- W3201769213 type Work @default.
- W3201769213 sameAs 3201769213 @default.
- W3201769213 citedByCount "15" @default.
- W3201769213 countsByYear W32017692132022 @default.
- W3201769213 countsByYear W32017692132023 @default.
- W3201769213 crossrefType "journal-article" @default.
- W3201769213 hasAuthorship W3201769213A5039341855 @default.
- W3201769213 hasAuthorship W3201769213A5047991219 @default.
- W3201769213 hasConcept C11413529 @default.
- W3201769213 hasConcept C114614502 @default.
- W3201769213 hasConcept C121332964 @default.
- W3201769213 hasConcept C12267149 @default.
- W3201769213 hasConcept C127413603 @default.
- W3201769213 hasConcept C139730468 @default.
- W3201769213 hasConcept C153180895 @default.
- W3201769213 hasConcept C154945302 @default.
- W3201769213 hasConcept C163716315 @default.
- W3201769213 hasConcept C169258074 @default.
- W3201769213 hasConcept C185207860 @default.
- W3201769213 hasConcept C192562407 @default.
- W3201769213 hasConcept C24890656 @default.
- W3201769213 hasConcept C33923547 @default.
- W3201769213 hasConcept C41008148 @default.
- W3201769213 hasConcept C52001869 @default.
- W3201769213 hasConcept C56318395 @default.
- W3201769213 hasConcept C56529433 @default.
- W3201769213 hasConcept C62520636 @default.
- W3201769213 hasConcept C66938386 @default.
- W3201769213 hasConcept C74193536 @default.
- W3201769213 hasConcept C81288441 @default.
- W3201769213 hasConcept C95623464 @default.
- W3201769213 hasConceptScore W3201769213C11413529 @default.
- W3201769213 hasConceptScore W3201769213C114614502 @default.
- W3201769213 hasConceptScore W3201769213C121332964 @default.
- W3201769213 hasConceptScore W3201769213C12267149 @default.
- W3201769213 hasConceptScore W3201769213C127413603 @default.
- W3201769213 hasConceptScore W3201769213C139730468 @default.
- W3201769213 hasConceptScore W3201769213C153180895 @default.
- W3201769213 hasConceptScore W3201769213C154945302 @default.
- W3201769213 hasConceptScore W3201769213C163716315 @default.
- W3201769213 hasConceptScore W3201769213C169258074 @default.
- W3201769213 hasConceptScore W3201769213C185207860 @default.
- W3201769213 hasConceptScore W3201769213C192562407 @default.
- W3201769213 hasConceptScore W3201769213C24890656 @default.
- W3201769213 hasConceptScore W3201769213C33923547 @default.
- W3201769213 hasConceptScore W3201769213C41008148 @default.
- W3201769213 hasConceptScore W3201769213C52001869 @default.
- W3201769213 hasConceptScore W3201769213C56318395 @default.
- W3201769213 hasConceptScore W3201769213C56529433 @default.
- W3201769213 hasConceptScore W3201769213C62520636 @default.
- W3201769213 hasConceptScore W3201769213C66938386 @default.
- W3201769213 hasConceptScore W3201769213C74193536 @default.