Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201783410> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3201783410 abstract "Convolutional neural network (CNN) has achieved superior performance on the computer-aided diagnosis for histopathological images. Although the spatial arrangement of cells of various types in histopathological images is an important characteristic for the diagnosis of cancers, CNN cannot explicitly capture this spatial structure information. This challenge can be overcome by constructing the graph data on histopathological images and learning the graph representation with valuable spatial correlations in the graph convolutional network (GCN). However, the current GCN models for histopathological images usually require a complicated preprocessing process or prior experience of node selection for graph construction. Moreover, there is a lack of learning architecture that can perform feature selection to refine features in the GCN. In this work, we propose a group quadratic graph convolutional network (GQ-GCN), which adopts CNN to extract features from histopathological images for further adaptively graph construction. In particular, the group graph convolutional network (G-GCN) is developed to implement both feature selection and compression of graph representation. In addition, the quadratic operation is specifically embedded into the graph convolution to enhance the representation ability of a single neuron for complex data. The experimental results on two public breast histopathological image datasets indicate the effectiveness of the proposed GQ-GCN." @default.
- W3201783410 created "2021-10-11" @default.
- W3201783410 creator A5023513705 @default.
- W3201783410 creator A5032832318 @default.
- W3201783410 creator A5042241049 @default.
- W3201783410 date "2021-01-01" @default.
- W3201783410 modified "2023-10-17" @default.
- W3201783410 title "GQ-GCN: Group Quadratic Graph Convolutional Network for Classification of Histopathological Images" @default.
- W3201783410 cites W2103243046 @default.
- W3201783410 cites W2151608510 @default.
- W3201783410 cites W2194775991 @default.
- W3201783410 cites W2515917241 @default.
- W3201783410 cites W2620578070 @default.
- W3201783410 cites W2751723768 @default.
- W3201783410 cites W2756270667 @default.
- W3201783410 cites W2890655214 @default.
- W3201783410 cites W2904494117 @default.
- W3201783410 cites W2919115771 @default.
- W3201783410 cites W2964296115 @default.
- W3201783410 cites W2982147654 @default.
- W3201783410 cites W2988396473 @default.
- W3201783410 cites W2988856610 @default.
- W3201783410 cites W3003416411 @default.
- W3201783410 cites W3009210879 @default.
- W3201783410 cites W3042024476 @default.
- W3201783410 doi "https://doi.org/10.1007/978-3-030-87237-3_12" @default.
- W3201783410 hasPublicationYear "2021" @default.
- W3201783410 type Work @default.
- W3201783410 sameAs 3201783410 @default.
- W3201783410 citedByCount "2" @default.
- W3201783410 countsByYear W32017834102022 @default.
- W3201783410 crossrefType "book-chapter" @default.
- W3201783410 hasAuthorship W3201783410A5023513705 @default.
- W3201783410 hasAuthorship W3201783410A5032832318 @default.
- W3201783410 hasAuthorship W3201783410A5042241049 @default.
- W3201783410 hasConcept C132525143 @default.
- W3201783410 hasConcept C148483581 @default.
- W3201783410 hasConcept C153180895 @default.
- W3201783410 hasConcept C154945302 @default.
- W3201783410 hasConcept C34736171 @default.
- W3201783410 hasConcept C41008148 @default.
- W3201783410 hasConcept C59404180 @default.
- W3201783410 hasConcept C80444323 @default.
- W3201783410 hasConcept C81363708 @default.
- W3201783410 hasConceptScore W3201783410C132525143 @default.
- W3201783410 hasConceptScore W3201783410C148483581 @default.
- W3201783410 hasConceptScore W3201783410C153180895 @default.
- W3201783410 hasConceptScore W3201783410C154945302 @default.
- W3201783410 hasConceptScore W3201783410C34736171 @default.
- W3201783410 hasConceptScore W3201783410C41008148 @default.
- W3201783410 hasConceptScore W3201783410C59404180 @default.
- W3201783410 hasConceptScore W3201783410C80444323 @default.
- W3201783410 hasConceptScore W3201783410C81363708 @default.
- W3201783410 hasLocation W32017834101 @default.
- W3201783410 hasOpenAccess W3201783410 @default.
- W3201783410 hasPrimaryLocation W32017834101 @default.
- W3201783410 hasRelatedWork W13088575 @default.
- W3201783410 hasRelatedWork W13109368 @default.
- W3201783410 hasRelatedWork W14789944 @default.
- W3201783410 hasRelatedWork W4533635 @default.
- W3201783410 hasRelatedWork W4680410 @default.
- W3201783410 hasRelatedWork W9402503 @default.
- W3201783410 hasRelatedWork W9448574 @default.
- W3201783410 hasRelatedWork W9481221 @default.
- W3201783410 hasRelatedWork W9770290 @default.
- W3201783410 hasRelatedWork W9860846 @default.
- W3201783410 isParatext "false" @default.
- W3201783410 isRetracted "false" @default.
- W3201783410 magId "3201783410" @default.
- W3201783410 workType "book-chapter" @default.