Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201788907> ?p ?o ?g. }
- W3201788907 abstract "Denoising is one of the most important data processing tasks and is generally a prerequisite for downstream image analysis in many fields. Despite their superior denoising performance, supervised deep denoising methods require paired noise-clean or noise-noise samples often unavailable in practice. On the other hand, unsupervised deep denoising methods such as Noise2Void and its variants predict masked pixels from their neighboring pixels in single noisy images. However, these unsupervised algorithms only work under the independent noise assumption while real noise distributions are usually correlated with complex structural patterns. Here we propose the first-of-its-kind feature similarity-based unsupervised denoising approach that works in a nonlocal and nonlinear fashion to suppress not only independent but also correlated noise. Our approach is referred to as Noise2Sim since different noisy sub-images with similar signals are extracted to form as many as possible training pairs so that the parameters of a deep denoising network can be optimized in a self-learning fashion. Theoretically, the theorem is established that Noise2Sim is equivalent to the supervised learning methods under mild conditions. Experimentally, Noise2Sim achieves excellent results on natural, microscopic, low-dose CT and photon-counting micro-CT images, removing image noise independent or not and being superior to the competitive denoising methods. Potentially, Noise2Sim would open a new direction of research and lead to the development of adaptive denoising tools in diverse applications." @default.
- W3201788907 created "2021-10-11" @default.
- W3201788907 creator A5018677035 @default.
- W3201788907 creator A5021565597 @default.
- W3201788907 creator A5051700680 @default.
- W3201788907 creator A5057851690 @default.
- W3201788907 creator A5065193592 @default.
- W3201788907 creator A5077824092 @default.
- W3201788907 date "2020-11-06" @default.
- W3201788907 modified "2023-09-23" @default.
- W3201788907 title "Suppression of Independent and Correlated Noise with Similarity-based Unsupervised Deep Learning" @default.
- W3201788907 cites W1652206149 @default.
- W3201788907 cites W1901129140 @default.
- W3201788907 cites W1994424757 @default.
- W3201788907 cites W2015549368 @default.
- W3201788907 cites W2028053705 @default.
- W3201788907 cites W2042220165 @default.
- W3201788907 cites W2056370875 @default.
- W3201788907 cites W2097900731 @default.
- W3201788907 cites W2099046646 @default.
- W3201788907 cites W2099244020 @default.
- W3201788907 cites W2110158442 @default.
- W3201788907 cites W2133665775 @default.
- W3201788907 cites W2146052399 @default.
- W3201788907 cites W2150134853 @default.
- W3201788907 cites W2170260757 @default.
- W3201788907 cites W2508457857 @default.
- W3201788907 cites W2518108298 @default.
- W3201788907 cites W2520016695 @default.
- W3201788907 cites W2584483805 @default.
- W3201788907 cites W2758694956 @default.
- W3201788907 cites W2799192307 @default.
- W3201788907 cites W2949725501 @default.
- W3201788907 cites W2964121744 @default.
- W3201788907 cites W2964204553 @default.
- W3201788907 cites W3007757852 @default.
- W3201788907 cites W3027106914 @default.
- W3201788907 cites W3034055814 @default.
- W3201788907 cites W3047011367 @default.
- W3201788907 cites W3086012665 @default.
- W3201788907 cites W3098281398 @default.
- W3201788907 cites W3103868430 @default.
- W3201788907 cites W3165822876 @default.
- W3201788907 cites W3186987339 @default.
- W3201788907 cites W3195625084 @default.
- W3201788907 cites W3198610423 @default.
- W3201788907 hasPublicationYear "2020" @default.
- W3201788907 type Work @default.
- W3201788907 sameAs 3201788907 @default.
- W3201788907 citedByCount "1" @default.
- W3201788907 countsByYear W32017889072021 @default.
- W3201788907 crossrefType "posted-content" @default.
- W3201788907 hasAuthorship W3201788907A5018677035 @default.
- W3201788907 hasAuthorship W3201788907A5021565597 @default.
- W3201788907 hasAuthorship W3201788907A5051700680 @default.
- W3201788907 hasAuthorship W3201788907A5057851690 @default.
- W3201788907 hasAuthorship W3201788907A5065193592 @default.
- W3201788907 hasAuthorship W3201788907A5077824092 @default.
- W3201788907 hasConcept C101453961 @default.
- W3201788907 hasConcept C103278499 @default.
- W3201788907 hasConcept C115961682 @default.
- W3201788907 hasConcept C138885662 @default.
- W3201788907 hasConcept C153180895 @default.
- W3201788907 hasConcept C154945302 @default.
- W3201788907 hasConcept C160633673 @default.
- W3201788907 hasConcept C163294075 @default.
- W3201788907 hasConcept C202474056 @default.
- W3201788907 hasConcept C23431618 @default.
- W3201788907 hasConcept C2776401178 @default.
- W3201788907 hasConcept C29265498 @default.
- W3201788907 hasConcept C2983327147 @default.
- W3201788907 hasConcept C30814859 @default.
- W3201788907 hasConcept C41008148 @default.
- W3201788907 hasConcept C41895202 @default.
- W3201788907 hasConcept C65483669 @default.
- W3201788907 hasConcept C8038995 @default.
- W3201788907 hasConcept C99498987 @default.
- W3201788907 hasConceptScore W3201788907C101453961 @default.
- W3201788907 hasConceptScore W3201788907C103278499 @default.
- W3201788907 hasConceptScore W3201788907C115961682 @default.
- W3201788907 hasConceptScore W3201788907C138885662 @default.
- W3201788907 hasConceptScore W3201788907C153180895 @default.
- W3201788907 hasConceptScore W3201788907C154945302 @default.
- W3201788907 hasConceptScore W3201788907C160633673 @default.
- W3201788907 hasConceptScore W3201788907C163294075 @default.
- W3201788907 hasConceptScore W3201788907C202474056 @default.
- W3201788907 hasConceptScore W3201788907C23431618 @default.
- W3201788907 hasConceptScore W3201788907C2776401178 @default.
- W3201788907 hasConceptScore W3201788907C29265498 @default.
- W3201788907 hasConceptScore W3201788907C2983327147 @default.
- W3201788907 hasConceptScore W3201788907C30814859 @default.
- W3201788907 hasConceptScore W3201788907C41008148 @default.
- W3201788907 hasConceptScore W3201788907C41895202 @default.
- W3201788907 hasConceptScore W3201788907C65483669 @default.
- W3201788907 hasConceptScore W3201788907C8038995 @default.
- W3201788907 hasConceptScore W3201788907C99498987 @default.
- W3201788907 hasLocation W32017889071 @default.
- W3201788907 hasOpenAccess W3201788907 @default.
- W3201788907 hasPrimaryLocation W32017889071 @default.
- W3201788907 hasRelatedWork W2483520534 @default.