Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201835768> ?p ?o ?g. }
- W3201835768 endingPage "100010" @default.
- W3201835768 startingPage "100010" @default.
- W3201835768 abstract "Food is considered as a basic need of human being which can be satisfied through farming. Agriculture not only fulfills humans’ basic needs, but also considered as source of employment worldwide. Agriculture is considered as a backbone of economy and source of employment in the developing countries like India. Agriculture contributes 15.4% in the GDP of India. Agriculture activities are broadly categorized into three major areas: pre-harvesting, harvesting and post harvesting. Advancement in area of machine learning has helped improving gains in agriculture. Machine learning is the current technology which is benefiting farmers to minimize the losses in the farming by providing rich recommendations and insights about the crops. This paper presents an extensive survey of latest machine learning application in agriculture to alleviate the problems in the three areas of pre-harvesting, harvesting and post-harvesting. Application of machine learning in agriculture allows more efficient and precise farming with less human manpower with high quality production." @default.
- W3201835768 created "2021-10-11" @default.
- W3201835768 creator A5035375900 @default.
- W3201835768 creator A5036247465 @default.
- W3201835768 creator A5060838811 @default.
- W3201835768 creator A5067219398 @default.
- W3201835768 creator A5079761758 @default.
- W3201835768 date "2021-12-01" @default.
- W3201835768 modified "2023-10-17" @default.
- W3201835768 title "Machine learning in agriculture domain: A state-of-art survey" @default.
- W3201835768 cites W2057106128 @default.
- W3201835768 cites W2268645644 @default.
- W3201835768 cites W2270460811 @default.
- W3201835768 cites W2339447311 @default.
- W3201835768 cites W2399675776 @default.
- W3201835768 cites W2473030931 @default.
- W3201835768 cites W2590652236 @default.
- W3201835768 cites W2758570879 @default.
- W3201835768 cites W2767554598 @default.
- W3201835768 cites W2776705292 @default.
- W3201835768 cites W2792444113 @default.
- W3201835768 cites W2799759580 @default.
- W3201835768 cites W2870878140 @default.
- W3201835768 cites W2885355309 @default.
- W3201835768 cites W2885770726 @default.
- W3201835768 cites W2887213393 @default.
- W3201835768 cites W2888840052 @default.
- W3201835768 cites W2897350321 @default.
- W3201835768 cites W2909099826 @default.
- W3201835768 cites W2911433502 @default.
- W3201835768 cites W2945051190 @default.
- W3201835768 cites W2946016983 @default.
- W3201835768 cites W2947521956 @default.
- W3201835768 cites W2962791118 @default.
- W3201835768 cites W2963353662 @default.
- W3201835768 cites W2963820222 @default.
- W3201835768 cites W2966284335 @default.
- W3201835768 cites W2968097540 @default.
- W3201835768 cites W2969435227 @default.
- W3201835768 cites W2970012058 @default.
- W3201835768 cites W2971495873 @default.
- W3201835768 cites W2982381523 @default.
- W3201835768 cites W2984249216 @default.
- W3201835768 cites W2991385255 @default.
- W3201835768 cites W2994978069 @default.
- W3201835768 cites W2997692196 @default.
- W3201835768 cites W3111432325 @default.
- W3201835768 cites W3120697286 @default.
- W3201835768 cites W3123920941 @default.
- W3201835768 doi "https://doi.org/10.1016/j.ailsci.2021.100010" @default.
- W3201835768 hasPublicationYear "2021" @default.
- W3201835768 type Work @default.
- W3201835768 sameAs 3201835768 @default.
- W3201835768 citedByCount "62" @default.
- W3201835768 countsByYear W32018357682022 @default.
- W3201835768 countsByYear W32018357682023 @default.
- W3201835768 crossrefType "journal-article" @default.
- W3201835768 hasAuthorship W3201835768A5035375900 @default.
- W3201835768 hasAuthorship W3201835768A5036247465 @default.
- W3201835768 hasAuthorship W3201835768A5060838811 @default.
- W3201835768 hasAuthorship W3201835768A5067219398 @default.
- W3201835768 hasAuthorship W3201835768A5079761758 @default.
- W3201835768 hasBestOaLocation W32018357681 @default.
- W3201835768 hasConcept C118518473 @default.
- W3201835768 hasConcept C127413603 @default.
- W3201835768 hasConcept C144133560 @default.
- W3201835768 hasConcept C162324750 @default.
- W3201835768 hasConcept C166957645 @default.
- W3201835768 hasConcept C205649164 @default.
- W3201835768 hasConcept C41008148 @default.
- W3201835768 hasConcept C48824518 @default.
- W3201835768 hasConcept C88463610 @default.
- W3201835768 hasConceptScore W3201835768C118518473 @default.
- W3201835768 hasConceptScore W3201835768C127413603 @default.
- W3201835768 hasConceptScore W3201835768C144133560 @default.
- W3201835768 hasConceptScore W3201835768C162324750 @default.
- W3201835768 hasConceptScore W3201835768C166957645 @default.
- W3201835768 hasConceptScore W3201835768C205649164 @default.
- W3201835768 hasConceptScore W3201835768C41008148 @default.
- W3201835768 hasConceptScore W3201835768C48824518 @default.
- W3201835768 hasConceptScore W3201835768C88463610 @default.
- W3201835768 hasLocation W32018357681 @default.
- W3201835768 hasLocation W32018357682 @default.
- W3201835768 hasOpenAccess W3201835768 @default.
- W3201835768 hasPrimaryLocation W32018357681 @default.
- W3201835768 hasRelatedWork W2359848768 @default.
- W3201835768 hasRelatedWork W2364770297 @default.
- W3201835768 hasRelatedWork W2365162723 @default.
- W3201835768 hasRelatedWork W2368267990 @default.
- W3201835768 hasRelatedWork W2384144815 @default.
- W3201835768 hasRelatedWork W2948812879 @default.
- W3201835768 hasRelatedWork W2973508232 @default.
- W3201835768 hasRelatedWork W3082501614 @default.
- W3201835768 hasRelatedWork W3122389410 @default.
- W3201835768 hasRelatedWork W3124407981 @default.
- W3201835768 hasVolume "1" @default.
- W3201835768 isParatext "false" @default.
- W3201835768 isRetracted "false" @default.