Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201847470> ?p ?o ?g. }
- W3201847470 endingPage "88" @default.
- W3201847470 startingPage "88" @default.
- W3201847470 abstract "A debate is emerging regarding the recent inconsistent results of different studies for the cosmic star formation rate density (CSFRD) at high-z. We employ UV and IR data sets to investigate the SFR function (SFRF) at z ∼ 0–9. We find that the SFRFs derived from the dust-corrected UV (UVcorr) data contradict those from IR on some key issues because they are described by different distributions (Schechter versus double power law), imply different physics for galaxy formation (UVcorr data suggest an SFR limit/strong mechanism that diminish the number density of highly star-forming systems with respect to IR) and compare differently with the stellar mass density evolution obtained from spectral energy distribution fitting (UVcorr is in agreement, while IR differs up to 0.5 dex). However, both tracers agree on a constant CSFRD evolution at z ∼ 1–4 and point to a plateau instead of a peak. In addition, using both indicators, we demonstrate that the evolution of the observed CSFRD can be described by only two parameters and a function that has the form of a Gamma distribution (Γ(a, bt)). In contrast to previous parameterizations used in the literature, our framework connects the parameters to physical properties such as the SFR depletion time and cosmic baryonic gas density. The build-up of stellar mass occurs in Γ(a, bt) distributed steps and is the result of gas consumption up to the limit at which no eligible gas for SF at t = ∞ remains, resulting in a final cosmic stellar mass density of ∼." @default.
- W3201847470 created "2021-10-11" @default.
- W3201847470 creator A5007980725 @default.
- W3201847470 creator A5023516136 @default.
- W3201847470 creator A5026311099 @default.
- W3201847470 date "2021-09-28" @default.
- W3201847470 modified "2023-10-12" @default.
- W3201847470 title "The Observed Cosmic Star Formation Rate Density Has an Evolution that Resembles a Γ(a, bt) Distribution and Can Be Described Successfully by Only Two Parameters" @default.
- W3201847470 cites W1508863994 @default.
- W3201847470 cites W1688275888 @default.
- W3201847470 cites W1776462530 @default.
- W3201847470 cites W1923021231 @default.
- W3201847470 cites W1964344398 @default.
- W3201847470 cites W1965692259 @default.
- W3201847470 cites W1967580830 @default.
- W3201847470 cites W1972573134 @default.
- W3201847470 cites W1974174849 @default.
- W3201847470 cites W1996668956 @default.
- W3201847470 cites W2000030959 @default.
- W3201847470 cites W2004261666 @default.
- W3201847470 cites W2005934541 @default.
- W3201847470 cites W2015637674 @default.
- W3201847470 cites W2017609025 @default.
- W3201847470 cites W2018075550 @default.
- W3201847470 cites W2019562528 @default.
- W3201847470 cites W2021925937 @default.
- W3201847470 cites W2024481825 @default.
- W3201847470 cites W2026372707 @default.
- W3201847470 cites W2028093813 @default.
- W3201847470 cites W2035198704 @default.
- W3201847470 cites W2039833992 @default.
- W3201847470 cites W2041084195 @default.
- W3201847470 cites W2052923345 @default.
- W3201847470 cites W2056718431 @default.
- W3201847470 cites W2058678220 @default.
- W3201847470 cites W2058731249 @default.
- W3201847470 cites W2070696493 @default.
- W3201847470 cites W2071407353 @default.
- W3201847470 cites W2073501758 @default.
- W3201847470 cites W2074259895 @default.
- W3201847470 cites W2090046995 @default.
- W3201847470 cites W2098914923 @default.
- W3201847470 cites W2100514692 @default.
- W3201847470 cites W2103593181 @default.
- W3201847470 cites W2112008471 @default.
- W3201847470 cites W2112625578 @default.
- W3201847470 cites W2114978259 @default.
- W3201847470 cites W2119131940 @default.
- W3201847470 cites W2121173473 @default.
- W3201847470 cites W2123267088 @default.
- W3201847470 cites W2129594560 @default.
- W3201847470 cites W2140439008 @default.
- W3201847470 cites W2141444993 @default.
- W3201847470 cites W2153886904 @default.
- W3201847470 cites W2154322720 @default.
- W3201847470 cites W2155670397 @default.
- W3201847470 cites W2156725132 @default.
- W3201847470 cites W2160909393 @default.
- W3201847470 cites W2239508317 @default.
- W3201847470 cites W2268149374 @default.
- W3201847470 cites W2349952956 @default.
- W3201847470 cites W2363994444 @default.
- W3201847470 cites W2413936938 @default.
- W3201847470 cites W2415700375 @default.
- W3201847470 cites W2463497332 @default.
- W3201847470 cites W2525425719 @default.
- W3201847470 cites W2531233254 @default.
- W3201847470 cites W2593327244 @default.
- W3201847470 cites W2600163159 @default.
- W3201847470 cites W2612049161 @default.
- W3201847470 cites W2613638711 @default.
- W3201847470 cites W2620847899 @default.
- W3201847470 cites W2734538553 @default.
- W3201847470 cites W2742546135 @default.
- W3201847470 cites W2756770055 @default.
- W3201847470 cites W2766288343 @default.
- W3201847470 cites W2771456842 @default.
- W3201847470 cites W2782582301 @default.
- W3201847470 cites W2795912868 @default.
- W3201847470 cites W2883820818 @default.
- W3201847470 cites W2884660857 @default.
- W3201847470 cites W2887363867 @default.
- W3201847470 cites W2890859742 @default.
- W3201847470 cites W2900400088 @default.
- W3201847470 cites W2912395310 @default.
- W3201847470 cites W2913221613 @default.
- W3201847470 cites W2921212665 @default.
- W3201847470 cites W2925064283 @default.
- W3201847470 cites W2936697871 @default.
- W3201847470 cites W2955610130 @default.
- W3201847470 cites W2958525581 @default.
- W3201847470 cites W2969985168 @default.
- W3201847470 cites W2972299128 @default.
- W3201847470 cites W2979433487 @default.
- W3201847470 cites W2985498878 @default.
- W3201847470 cites W2999183540 @default.
- W3201847470 cites W3000052519 @default.
- W3201847470 cites W3013188716 @default.