Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201856609> ?p ?o ?g. }
- W3201856609 endingPage "1210" @default.
- W3201856609 startingPage "1200" @default.
- W3201856609 abstract "Deep learning techniques have recently brought many improvements in the field of neural network training, especially for prognosis and health management. The success of such an intelligent health assessment model depends not only on the availability of labeled historical data but also on the careful samples selection. However, in real operating systems such as induction machines, which generally have a long reliable life, storing the entire operation history, including deterioration (i.e. bearings), will be very expensive and difficult to feed accurately into the training model. Other alternatives sequentially store samples that hold degradation patterns similar to real ones in damage behavior by imposing an accelerated deterioration. Labels lack and differences in distributions caused by the imposed deterioration will ultimately discriminate the training model and limit its knowledge capacity. In an attempt to overcome these drawbacks, a novel sequence-by-sequence deep learning algorithm able to expand the generalization capacity by transferring obtained knowledge from life cycles of similar systems is proposed. The new algorithm aims to determine health status by involving long short-term memory neural network as a primary component of adaptive learning to extract both health stage and health index inferences. Experimental validations are performed using the PRONOSTIA bearing degradation datasets." @default.
- W3201856609 created "2021-10-11" @default.
- W3201856609 creator A5027534502 @default.
- W3201856609 creator A5040353704 @default.
- W3201856609 creator A5071869967 @default.
- W3201856609 creator A5074477100 @default.
- W3201856609 date "2022-06-01" @default.
- W3201856609 modified "2023-10-16" @default.
- W3201856609 title "A Semi-Supervised Deep Transfer Learning Approach for Rolling-Element Bearing Remaining Useful Life Prediction" @default.
- W3201856609 cites W1987971958 @default.
- W3201856609 cites W2319025975 @default.
- W3201856609 cites W2537964373 @default.
- W3201856609 cites W2773549135 @default.
- W3201856609 cites W2774089251 @default.
- W3201856609 cites W2815862320 @default.
- W3201856609 cites W2889809771 @default.
- W3201856609 cites W2889828432 @default.
- W3201856609 cites W2892709813 @default.
- W3201856609 cites W2898375427 @default.
- W3201856609 cites W2900438754 @default.
- W3201856609 cites W2920309150 @default.
- W3201856609 cites W2971114125 @default.
- W3201856609 cites W2972487051 @default.
- W3201856609 cites W2983199727 @default.
- W3201856609 cites W2983425754 @default.
- W3201856609 cites W2990226288 @default.
- W3201856609 cites W2997783880 @default.
- W3201856609 cites W3001566134 @default.
- W3201856609 cites W3005986561 @default.
- W3201856609 cites W3007509626 @default.
- W3201856609 cites W3009851774 @default.
- W3201856609 cites W3020712220 @default.
- W3201856609 cites W3021048621 @default.
- W3201856609 cites W3021754181 @default.
- W3201856609 cites W3022518887 @default.
- W3201856609 cites W3026006566 @default.
- W3201856609 cites W3034198376 @default.
- W3201856609 cites W3035461362 @default.
- W3201856609 cites W3048796145 @default.
- W3201856609 cites W3082167424 @default.
- W3201856609 cites W3083956363 @default.
- W3201856609 cites W3105919389 @default.
- W3201856609 cites W3107953130 @default.
- W3201856609 cites W3116698143 @default.
- W3201856609 cites W3134412914 @default.
- W3201856609 cites W3142840631 @default.
- W3201856609 cites W3156272464 @default.
- W3201856609 cites W3166010619 @default.
- W3201856609 doi "https://doi.org/10.1109/tec.2021.3116423" @default.
- W3201856609 hasPublicationYear "2022" @default.
- W3201856609 type Work @default.
- W3201856609 sameAs 3201856609 @default.
- W3201856609 citedByCount "10" @default.
- W3201856609 countsByYear W32018566092022 @default.
- W3201856609 countsByYear W32018566092023 @default.
- W3201856609 crossrefType "journal-article" @default.
- W3201856609 hasAuthorship W3201856609A5027534502 @default.
- W3201856609 hasAuthorship W3201856609A5040353704 @default.
- W3201856609 hasAuthorship W3201856609A5071869967 @default.
- W3201856609 hasAuthorship W3201856609A5074477100 @default.
- W3201856609 hasConcept C108583219 @default.
- W3201856609 hasConcept C119857082 @default.
- W3201856609 hasConcept C121332964 @default.
- W3201856609 hasConcept C124101348 @default.
- W3201856609 hasConcept C134306372 @default.
- W3201856609 hasConcept C150899416 @default.
- W3201856609 hasConcept C151201525 @default.
- W3201856609 hasConcept C154945302 @default.
- W3201856609 hasConcept C168167062 @default.
- W3201856609 hasConcept C177148314 @default.
- W3201856609 hasConcept C202444582 @default.
- W3201856609 hasConcept C2778112365 @default.
- W3201856609 hasConcept C33923547 @default.
- W3201856609 hasConcept C41008148 @default.
- W3201856609 hasConcept C50644808 @default.
- W3201856609 hasConcept C54355233 @default.
- W3201856609 hasConcept C86803240 @default.
- W3201856609 hasConcept C9652623 @default.
- W3201856609 hasConcept C97355855 @default.
- W3201856609 hasConceptScore W3201856609C108583219 @default.
- W3201856609 hasConceptScore W3201856609C119857082 @default.
- W3201856609 hasConceptScore W3201856609C121332964 @default.
- W3201856609 hasConceptScore W3201856609C124101348 @default.
- W3201856609 hasConceptScore W3201856609C134306372 @default.
- W3201856609 hasConceptScore W3201856609C150899416 @default.
- W3201856609 hasConceptScore W3201856609C151201525 @default.
- W3201856609 hasConceptScore W3201856609C154945302 @default.
- W3201856609 hasConceptScore W3201856609C168167062 @default.
- W3201856609 hasConceptScore W3201856609C177148314 @default.
- W3201856609 hasConceptScore W3201856609C202444582 @default.
- W3201856609 hasConceptScore W3201856609C2778112365 @default.
- W3201856609 hasConceptScore W3201856609C33923547 @default.
- W3201856609 hasConceptScore W3201856609C41008148 @default.
- W3201856609 hasConceptScore W3201856609C50644808 @default.
- W3201856609 hasConceptScore W3201856609C54355233 @default.
- W3201856609 hasConceptScore W3201856609C86803240 @default.
- W3201856609 hasConceptScore W3201856609C9652623 @default.
- W3201856609 hasConceptScore W3201856609C97355855 @default.