Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201866440> ?p ?o ?g. }
- W3201866440 abstract "Unsupervised domain adaptation (UDA) aims at exploiting related but different data sources to tackle a common task in a target domain. UDA remains a central yet challenging problem in machine learning. In this paper, we present an approach tailored to moderate-dimensional tabular problems which are hugely important in industrial applications and less well-served by the plethora of methods designed for image and language data. Knothe-Rosenblatt Domain Adaptation (KRDA) is based on the Knothe-Rosenblatt transport: we exploit autoregressive density estimation algorithms to accurately model the different sources by an autoregressive model using a mixture of Gaussians. KRDA then takes advantage of the triangularity of the autoregressive models to build an explicit mapping of the source samples into the target domain. We show that the transfer map built by KRDA preserves each component quantiles of the observations, hence aligning the representations of the different data sets in the same target domain. Finally, we show that KRDA has state-of-the-art performance on both synthetic and real world UDA problems." @default.
- W3201866440 created "2021-10-11" @default.
- W3201866440 creator A5020678336 @default.
- W3201866440 creator A5035113720 @default.
- W3201866440 creator A5051459492 @default.
- W3201866440 creator A5089687907 @default.
- W3201866440 date "2021-10-06" @default.
- W3201866440 modified "2023-09-27" @default.
- W3201866440 title "Knothe-Rosenblatt transport for Unsupervised Domain Adaptation." @default.
- W3201866440 cites W123476658 @default.
- W3201866440 cites W1579853615 @default.
- W3201866440 cites W1594039573 @default.
- W3201866440 cites W1722318740 @default.
- W3201866440 cites W1731081199 @default.
- W3201866440 cites W189596042 @default.
- W3201866440 cites W1995565517 @default.
- W3201866440 cites W1998037613 @default.
- W3201866440 cites W2006957355 @default.
- W3201866440 cites W2027731328 @default.
- W3201866440 cites W2071207147 @default.
- W3201866440 cites W2104068492 @default.
- W3201866440 cites W2112483442 @default.
- W3201866440 cites W2115403315 @default.
- W3201866440 cites W2121010533 @default.
- W3201866440 cites W2125865219 @default.
- W3201866440 cites W2135181320 @default.
- W3201866440 cites W2140574335 @default.
- W3201866440 cites W2141067830 @default.
- W3201866440 cites W2149466042 @default.
- W3201866440 cites W2159291411 @default.
- W3201866440 cites W2162651021 @default.
- W3201866440 cites W2165698076 @default.
- W3201866440 cites W2267126114 @default.
- W3201866440 cites W2342070830 @default.
- W3201866440 cites W2463241543 @default.
- W3201866440 cites W2569729041 @default.
- W3201866440 cites W2795155917 @default.
- W3201866440 cites W2894866963 @default.
- W3201866440 cites W2912298597 @default.
- W3201866440 cites W2921319277 @default.
- W3201866440 cites W2944818408 @default.
- W3201866440 cites W2953958347 @default.
- W3201866440 cites W2962687275 @default.
- W3201866440 cites W2962970380 @default.
- W3201866440 cites W2963090522 @default.
- W3201866440 cites W2964121744 @default.
- W3201866440 cites W2964278684 @default.
- W3201866440 cites W2979509742 @default.
- W3201866440 cites W2981167731 @default.
- W3201866440 cites W2986381065 @default.
- W3201866440 cites W2990812820 @default.
- W3201866440 cites W3006614673 @default.
- W3201866440 cites W3011134629 @default.
- W3201866440 cites W3034218934 @default.
- W3201866440 cites W3034526587 @default.
- W3201866440 cites W3041133507 @default.
- W3201866440 cites W3103589224 @default.
- W3201866440 cites W3121910968 @default.
- W3201866440 cites W3215037115 @default.
- W3201866440 hasPublicationYear "2021" @default.
- W3201866440 type Work @default.
- W3201866440 sameAs 3201866440 @default.
- W3201866440 citedByCount "0" @default.
- W3201866440 crossrefType "posted-content" @default.
- W3201866440 hasAuthorship W3201866440A5020678336 @default.
- W3201866440 hasAuthorship W3201866440A5035113720 @default.
- W3201866440 hasAuthorship W3201866440A5051459492 @default.
- W3201866440 hasAuthorship W3201866440A5089687907 @default.
- W3201866440 hasConcept C118671147 @default.
- W3201866440 hasConcept C119857082 @default.
- W3201866440 hasConcept C120665830 @default.
- W3201866440 hasConcept C121332964 @default.
- W3201866440 hasConcept C124101348 @default.
- W3201866440 hasConcept C134306372 @default.
- W3201866440 hasConcept C139807058 @default.
- W3201866440 hasConcept C149782125 @default.
- W3201866440 hasConcept C153180895 @default.
- W3201866440 hasConcept C154945302 @default.
- W3201866440 hasConcept C159877910 @default.
- W3201866440 hasConcept C165696696 @default.
- W3201866440 hasConcept C2776434776 @default.
- W3201866440 hasConcept C33923547 @default.
- W3201866440 hasConcept C36503486 @default.
- W3201866440 hasConcept C38652104 @default.
- W3201866440 hasConcept C41008148 @default.
- W3201866440 hasConcept C95623464 @default.
- W3201866440 hasConceptScore W3201866440C118671147 @default.
- W3201866440 hasConceptScore W3201866440C119857082 @default.
- W3201866440 hasConceptScore W3201866440C120665830 @default.
- W3201866440 hasConceptScore W3201866440C121332964 @default.
- W3201866440 hasConceptScore W3201866440C124101348 @default.
- W3201866440 hasConceptScore W3201866440C134306372 @default.
- W3201866440 hasConceptScore W3201866440C139807058 @default.
- W3201866440 hasConceptScore W3201866440C149782125 @default.
- W3201866440 hasConceptScore W3201866440C153180895 @default.
- W3201866440 hasConceptScore W3201866440C154945302 @default.
- W3201866440 hasConceptScore W3201866440C159877910 @default.
- W3201866440 hasConceptScore W3201866440C165696696 @default.
- W3201866440 hasConceptScore W3201866440C2776434776 @default.
- W3201866440 hasConceptScore W3201866440C33923547 @default.