Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201890003> ?p ?o ?g. }
- W3201890003 endingPage "117389" @default.
- W3201890003 startingPage "117389" @default.
- W3201890003 abstract "• A probabilistic-based small sample extremum estimation method was proposed for the random maximum defect of LDD parts. • The number of defects samplings was reduced with the combination of EVS and approximate defect distribution. • A defect-related fatigue life prediction model was established basing fatigue critical stress. • The high cycle fatigue life of parts was directly and reliably predicted with process-independent approach. Laser direct deposition (LDD) is a typical additive manufacture process for complex parts, while the highly complex thermal behavior during LDD results in the generation and randomness of parts’ internal defects. Among these internal defects, the maximum defect-induced fatigue cracks initiation is the most influential factor of fatigue life for the in-service performance. Apparently, how to estimate the random maximum defect size of surface polished parts is critical for predicting the fatigue life. Therefore, according to extreme value statistic (EVS) theory, an extremum probabilistic estimation method from small sample size was proposed for parts’ random maximum defect size from a sub-volume to the whole-volume. Subsequently, with the obtained maximum defect and being taken to be equivalent to cracks, a defect-related fatigue life prediction model was established based on the failure critical stress. Orthogonal experiment was carried out for obtaining the different maximum defect, and the hardness for each sample was measured as well. The results showed that: (1) The proposed method can reliably estimate the maximum defect size of LDD-316L parts under the small defect samples size and the error was within 10 %. (2) The established prediction model provided a process-independent method for directly estimating the LDD-316L parts’ fatigue life, with the accuracy being over 78 %. This research provides a novel methodology for estimating parts’ maximum defect size and fatigue life, and offers a theoretical basis for reliability and economy of parts during manufacturing and servicing process." @default.
- W3201890003 created "2021-10-11" @default.
- W3201890003 creator A5029745289 @default.
- W3201890003 creator A5044544424 @default.
- W3201890003 creator A5051101370 @default.
- W3201890003 creator A5053204257 @default.
- W3201890003 creator A5073144152 @default.
- W3201890003 creator A5084775809 @default.
- W3201890003 date "2022-01-01" @default.
- W3201890003 modified "2023-10-06" @default.
- W3201890003 title "Probabilistic-based random maximum defect estimation and defect-related fatigue life prediction for laser direct deposited 316L parts" @default.
- W3201890003 cites W1970078532 @default.
- W3201890003 cites W2046543896 @default.
- W3201890003 cites W2058524613 @default.
- W3201890003 cites W2060092079 @default.
- W3201890003 cites W2071037147 @default.
- W3201890003 cites W2073334167 @default.
- W3201890003 cites W2081814083 @default.
- W3201890003 cites W2082826895 @default.
- W3201890003 cites W2089120380 @default.
- W3201890003 cites W2092611370 @default.
- W3201890003 cites W2094876434 @default.
- W3201890003 cites W2098938259 @default.
- W3201890003 cites W2108711301 @default.
- W3201890003 cites W2149378144 @default.
- W3201890003 cites W2330124419 @default.
- W3201890003 cites W2405744025 @default.
- W3201890003 cites W2408619629 @default.
- W3201890003 cites W2411571856 @default.
- W3201890003 cites W2568514500 @default.
- W3201890003 cites W2594293204 @default.
- W3201890003 cites W2618679775 @default.
- W3201890003 cites W2737917991 @default.
- W3201890003 cites W2761714291 @default.
- W3201890003 cites W2773637617 @default.
- W3201890003 cites W2777843313 @default.
- W3201890003 cites W2791507323 @default.
- W3201890003 cites W2800371388 @default.
- W3201890003 cites W2884182163 @default.
- W3201890003 cites W2885038379 @default.
- W3201890003 cites W2909667680 @default.
- W3201890003 cites W2912208744 @default.
- W3201890003 cites W2921220805 @default.
- W3201890003 cites W2953367254 @default.
- W3201890003 cites W2986379646 @default.
- W3201890003 cites W3082171214 @default.
- W3201890003 cites W3154325778 @default.
- W3201890003 cites W943735021 @default.
- W3201890003 doi "https://doi.org/10.1016/j.jmatprotec.2021.117389" @default.
- W3201890003 hasPublicationYear "2022" @default.
- W3201890003 type Work @default.
- W3201890003 sameAs 3201890003 @default.
- W3201890003 citedByCount "10" @default.
- W3201890003 countsByYear W32018900032022 @default.
- W3201890003 countsByYear W32018900032023 @default.
- W3201890003 crossrefType "journal-article" @default.
- W3201890003 hasAuthorship W3201890003A5029745289 @default.
- W3201890003 hasAuthorship W3201890003A5044544424 @default.
- W3201890003 hasAuthorship W3201890003A5051101370 @default.
- W3201890003 hasAuthorship W3201890003A5053204257 @default.
- W3201890003 hasAuthorship W3201890003A5073144152 @default.
- W3201890003 hasAuthorship W3201890003A5084775809 @default.
- W3201890003 hasConcept C105795698 @default.
- W3201890003 hasConcept C125112378 @default.
- W3201890003 hasConcept C127413603 @default.
- W3201890003 hasConcept C129848803 @default.
- W3201890003 hasConcept C138885662 @default.
- W3201890003 hasConcept C173291955 @default.
- W3201890003 hasConcept C192562407 @default.
- W3201890003 hasConcept C21036866 @default.
- W3201890003 hasConcept C33923547 @default.
- W3201890003 hasConcept C41895202 @default.
- W3201890003 hasConcept C49937458 @default.
- W3201890003 hasConcept C66938386 @default.
- W3201890003 hasConceptScore W3201890003C105795698 @default.
- W3201890003 hasConceptScore W3201890003C125112378 @default.
- W3201890003 hasConceptScore W3201890003C127413603 @default.
- W3201890003 hasConceptScore W3201890003C129848803 @default.
- W3201890003 hasConceptScore W3201890003C138885662 @default.
- W3201890003 hasConceptScore W3201890003C173291955 @default.
- W3201890003 hasConceptScore W3201890003C192562407 @default.
- W3201890003 hasConceptScore W3201890003C21036866 @default.
- W3201890003 hasConceptScore W3201890003C33923547 @default.
- W3201890003 hasConceptScore W3201890003C41895202 @default.
- W3201890003 hasConceptScore W3201890003C49937458 @default.
- W3201890003 hasConceptScore W3201890003C66938386 @default.
- W3201890003 hasFunder F4320321001 @default.
- W3201890003 hasFunder F4320322843 @default.
- W3201890003 hasLocation W32018900031 @default.
- W3201890003 hasOpenAccess W3201890003 @default.
- W3201890003 hasPrimaryLocation W32018900031 @default.
- W3201890003 hasRelatedWork W1981810024 @default.
- W3201890003 hasRelatedWork W1994805814 @default.
- W3201890003 hasRelatedWork W2006574755 @default.
- W3201890003 hasRelatedWork W2089890700 @default.
- W3201890003 hasRelatedWork W2141112320 @default.
- W3201890003 hasRelatedWork W2371433534 @default.
- W3201890003 hasRelatedWork W2383898933 @default.