Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201895909> ?p ?o ?g. }
- W3201895909 abstract "The increasing availability of massive data sets poses a series of challenges for machine learning. Prominent among these is the need to learn models under hardware or human resource constraints. In such resource-constrained settings, a simple yet powerful approach is to operate on small subsets of the data. Coresets are weighted subsets of the data that provide approximation guarantees for the optimization objective. However, existing coreset constructions are highly model-specific and are limited to simple models such as linear regression, logistic regression, and $k$-means. In this work, we propose a generic coreset construction framework that formulates the coreset selection as a cardinality-constrained bilevel optimization problem. In contrast to existing approaches, our framework does not require model-specific adaptations and applies to any twice differentiable model, including neural networks. We show the effectiveness of our framework for a wide range of models in various settings, including training non-convex models online and batch active learning." @default.
- W3201895909 created "2021-10-11" @default.
- W3201895909 creator A5003040843 @default.
- W3201895909 creator A5026110001 @default.
- W3201895909 creator A5033341878 @default.
- W3201895909 creator A5091198938 @default.
- W3201895909 date "2021-09-26" @default.
- W3201895909 modified "2023-09-23" @default.
- W3201895909 title "Data Summarization via Bilevel Optimization." @default.
- W3201895909 cites W1622263187 @default.
- W3201895909 cites W1682403713 @default.
- W3201895909 cites W1912128066 @default.
- W3201895909 cites W1964765773 @default.
- W3201895909 cites W1977263019 @default.
- W3201895909 cites W1978259121 @default.
- W3201895909 cites W1981773323 @default.
- W3201895909 cites W1984989304 @default.
- W3201895909 cites W1990676004 @default.
- W3201895909 cites W2005629858 @default.
- W3201895909 cites W2014018052 @default.
- W3201895909 cites W2045964207 @default.
- W3201895909 cites W2060277733 @default.
- W3201895909 cites W2073459066 @default.
- W3201895909 cites W2085989833 @default.
- W3201895909 cites W2093545205 @default.
- W3201895909 cites W2104848109 @default.
- W3201895909 cites W2109706083 @default.
- W3201895909 cites W2112545207 @default.
- W3201895909 cites W2115305054 @default.
- W3201895909 cites W2116108132 @default.
- W3201895909 cites W2119885577 @default.
- W3201895909 cites W2128518360 @default.
- W3201895909 cites W2135046866 @default.
- W3201895909 cites W2136885855 @default.
- W3201895909 cites W2137795521 @default.
- W3201895909 cites W2139823104 @default.
- W3201895909 cites W2141552007 @default.
- W3201895909 cites W2141696759 @default.
- W3201895909 cites W2145147745 @default.
- W3201895909 cites W2149489931 @default.
- W3201895909 cites W2153356636 @default.
- W3201895909 cites W2155319834 @default.
- W3201895909 cites W2164452299 @default.
- W3201895909 cites W2230030897 @default.
- W3201895909 cites W2247953682 @default.
- W3201895909 cites W2296616510 @default.
- W3201895909 cites W2335728318 @default.
- W3201895909 cites W2401231614 @default.
- W3201895909 cites W2560647685 @default.
- W3201895909 cites W2592691248 @default.
- W3201895909 cites W2595294663 @default.
- W3201895909 cites W2597603852 @default.
- W3201895909 cites W2601251344 @default.
- W3201895909 cites W2604763608 @default.
- W3201895909 cites W2612467436 @default.
- W3201895909 cites W2737492962 @default.
- W3201895909 cites W2742093937 @default.
- W3201895909 cites W2797583228 @default.
- W3201895909 cites W2810075754 @default.
- W3201895909 cites W2903996579 @default.
- W3201895909 cites W2926477959 @default.
- W3201895909 cites W2962724315 @default.
- W3201895909 cites W2962826047 @default.
- W3201895909 cites W2962835968 @default.
- W3201895909 cites W2963070594 @default.
- W3201895909 cites W2963096809 @default.
- W3201895909 cites W2963163009 @default.
- W3201895909 cites W2963238969 @default.
- W3201895909 cites W2963306862 @default.
- W3201895909 cites W2963559848 @default.
- W3201895909 cites W2963577698 @default.
- W3201895909 cites W2963804140 @default.
- W3201895909 cites W2963842222 @default.
- W3201895909 cites W2963902936 @default.
- W3201895909 cites W2964010828 @default.
- W3201895909 cites W2964067969 @default.
- W3201895909 cites W2964189064 @default.
- W3201895909 cites W2964332587 @default.
- W3201895909 cites W2968596670 @default.
- W3201895909 cites W2970066656 @default.
- W3201895909 cites W2970693987 @default.
- W3201895909 cites W2978426779 @default.
- W3201895909 cites W2981212515 @default.
- W3201895909 cites W2982701845 @default.
- W3201895909 cites W2990329344 @default.
- W3201895909 cites W2994747787 @default.
- W3201895909 cites W2995188922 @default.
- W3201895909 cites W2995592331 @default.
- W3201895909 cites W2995795252 @default.
- W3201895909 cites W2997289456 @default.
- W3201895909 cites W3034251946 @default.
- W3201895909 cites W3035471260 @default.
- W3201895909 cites W3037120332 @default.
- W3201895909 cites W3098758181 @default.
- W3201895909 cites W3099396445 @default.
- W3201895909 cites W3119342105 @default.
- W3201895909 cites W3120740533 @default.
- W3201895909 cites W3162299809 @default.
- W3201895909 cites W3169515700 @default.
- W3201895909 cites W3175527903 @default.