Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201907027> ?p ?o ?g. }
- W3201907027 endingPage "135303" @default.
- W3201907027 startingPage "135285" @default.
- W3201907027 abstract "Recently, data-driven remaining useful life (RUL) prediction has become a promising tool in prognostics and health management for rolling bearings. In many actual applications, however, it is not easy to collect whole-life degradation data of bearings, while training with an insufficient amount of data would result in a biased RUL prediction model. If the monitoring data historically accumulated under different working conditions are introduced to facilitate model training, it probably tends to get inadequate prediction performance due to the violation of the precondition of independent and identical distribution (i.i.d.). To solve this problem, a new bearing RUL prediction approach is proposed by utilizing the transfer learning strategy. First, a new time series clustering algorithm is proposed to exploit clusters of different degradation series. By integrating phase space warping and dynamic time warping, this algorithm is able to measure the similarity by using global degradation information and then get better clustering performance. Second, a new temporal domain adaptation method is proposed to obtain the pivot feature set of different bearings based on meta-degradation information which is represented by the principal curve of each cluster. Finally, support vector machine is run to establish the prediction model by means of these features, and RUL of the target bearing can be predicted via the same feature adaptation. A theoretical analysis is also provided to prove that the proposed approach has an upper bound of information loss in the transfer process. Experimental results on the IEEE PHM challenge 2012 dataset demonstrate the effectiveness of the proposed approach." @default.
- W3201907027 created "2021-10-11" @default.
- W3201907027 creator A5014198317 @default.
- W3201907027 creator A5033586311 @default.
- W3201907027 creator A5079126772 @default.
- W3201907027 creator A5081192942 @default.
- W3201907027 date "2021-01-01" @default.
- W3201907027 modified "2023-09-30" @default.
- W3201907027 title "Prediction of Bearings Remaining Useful Life Across Working Conditions Based on Transfer Learning and Time Series Clustering" @default.
- W3201907027 cites W1481913965 @default.
- W3201907027 cites W1534304300 @default.
- W3201907027 cites W1894414046 @default.
- W3201907027 cites W1975687401 @default.
- W3201907027 cites W1978654022 @default.
- W3201907027 cites W1980728267 @default.
- W3201907027 cites W1990368529 @default.
- W3201907027 cites W1992113394 @default.
- W3201907027 cites W2006169073 @default.
- W3201907027 cites W2031810468 @default.
- W3201907027 cites W2053443947 @default.
- W3201907027 cites W2074413628 @default.
- W3201907027 cites W2079473768 @default.
- W3201907027 cites W2103519186 @default.
- W3201907027 cites W2104068492 @default.
- W3201907027 cites W2115403315 @default.
- W3201907027 cites W2134518303 @default.
- W3201907027 cites W2138067521 @default.
- W3201907027 cites W2152074354 @default.
- W3201907027 cites W2153635508 @default.
- W3201907027 cites W2157175865 @default.
- W3201907027 cites W2165698076 @default.
- W3201907027 cites W2394226702 @default.
- W3201907027 cites W2464878551 @default.
- W3201907027 cites W2604957411 @default.
- W3201907027 cites W2612904117 @default.
- W3201907027 cites W2617137613 @default.
- W3201907027 cites W2772084711 @default.
- W3201907027 cites W2773549135 @default.
- W3201907027 cites W2798149494 @default.
- W3201907027 cites W2799598492 @default.
- W3201907027 cites W2808622270 @default.
- W3201907027 cites W2900529838 @default.
- W3201907027 cites W2902443160 @default.
- W3201907027 cites W2904172802 @default.
- W3201907027 cites W2907541186 @default.
- W3201907027 cites W2942862636 @default.
- W3201907027 cites W2945413072 @default.
- W3201907027 cites W2999342951 @default.
- W3201907027 cites W3045857695 @default.
- W3201907027 cites W3083531094 @default.
- W3201907027 cites W3128151922 @default.
- W3201907027 cites W4251002338 @default.
- W3201907027 doi "https://doi.org/10.1109/access.2021.3117002" @default.
- W3201907027 hasPublicationYear "2021" @default.
- W3201907027 type Work @default.
- W3201907027 sameAs 3201907027 @default.
- W3201907027 citedByCount "11" @default.
- W3201907027 countsByYear W32019070272022 @default.
- W3201907027 countsByYear W32019070272023 @default.
- W3201907027 crossrefType "journal-article" @default.
- W3201907027 hasAuthorship W3201907027A5014198317 @default.
- W3201907027 hasAuthorship W3201907027A5033586311 @default.
- W3201907027 hasAuthorship W3201907027A5079126772 @default.
- W3201907027 hasAuthorship W3201907027A5081192942 @default.
- W3201907027 hasBestOaLocation W32019070271 @default.
- W3201907027 hasConcept C111919701 @default.
- W3201907027 hasConcept C119857082 @default.
- W3201907027 hasConcept C124101348 @default.
- W3201907027 hasConcept C129364497 @default.
- W3201907027 hasConcept C138885662 @default.
- W3201907027 hasConcept C151406439 @default.
- W3201907027 hasConcept C153180895 @default.
- W3201907027 hasConcept C154945302 @default.
- W3201907027 hasConcept C199978012 @default.
- W3201907027 hasConcept C2776401178 @default.
- W3201907027 hasConcept C41008148 @default.
- W3201907027 hasConcept C41895202 @default.
- W3201907027 hasConcept C73555534 @default.
- W3201907027 hasConcept C88516994 @default.
- W3201907027 hasConcept C98045186 @default.
- W3201907027 hasConceptScore W3201907027C111919701 @default.
- W3201907027 hasConceptScore W3201907027C119857082 @default.
- W3201907027 hasConceptScore W3201907027C124101348 @default.
- W3201907027 hasConceptScore W3201907027C129364497 @default.
- W3201907027 hasConceptScore W3201907027C138885662 @default.
- W3201907027 hasConceptScore W3201907027C151406439 @default.
- W3201907027 hasConceptScore W3201907027C153180895 @default.
- W3201907027 hasConceptScore W3201907027C154945302 @default.
- W3201907027 hasConceptScore W3201907027C199978012 @default.
- W3201907027 hasConceptScore W3201907027C2776401178 @default.
- W3201907027 hasConceptScore W3201907027C41008148 @default.
- W3201907027 hasConceptScore W3201907027C41895202 @default.
- W3201907027 hasConceptScore W3201907027C73555534 @default.
- W3201907027 hasConceptScore W3201907027C88516994 @default.
- W3201907027 hasConceptScore W3201907027C98045186 @default.
- W3201907027 hasFunder F4320321001 @default.
- W3201907027 hasLocation W32019070271 @default.
- W3201907027 hasOpenAccess W3201907027 @default.