Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201909620> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3201909620 endingPage "0" @default.
- W3201909620 startingPage "0" @default.
- W3201909620 abstract "<p style='text-indent:20px;'>There has been an emerging interest in developing and applying dictionary learning (DL) to process massive datasets in the last decade. Many of these efforts, however, focus on employing DL to compress and extract a set of important features from data, while considering restoring the original data from this set a secondary goal. On the other hand, although several methods are able to process streaming data by updating the dictionary incrementally as new snapshots pass by, most of those algorithms are designed for the setting where the snapshots are randomly drawn from a probability distribution. In this paper, we present a new DL approach to compress and denoise massive dataset in real time, in which the data are streamed through in a preset order (instances are videos and temporal experimental data), so at any time, we can only observe a biased sample set of the whole data. Our approach incrementally builds up the dictionary in a relatively simple manner: if the new snapshot is adequately explained by the current dictionary, we perform a sparse coding to find its sparse representation; otherwise, we add the new snapshot to the dictionary, with a Gram-Schmidt process to maintain the orthogonality. To compress and denoise noisy datasets, we apply the denoising to the snapshot directly before sparse coding, which deviates from traditional dictionary learning approach that achieves denoising via sparse coding. Compared to full-batch matrix decomposition methods, where the whole data is kept in memory, and other mini-batch approaches, where unbiased sampling is often assumed, our approach has minimal requirement in data sampling and storage: i) each snapshot is only seen once then discarded, and ii) the snapshots are drawn in a preset order, so can be highly biased. Through experiments on climate simulations and scanning transmission electron microscopy (STEM) data, we demonstrate that the proposed approach performs competitively to those methods in data reconstruction and denoising.</p>" @default.
- W3201909620 created "2021-10-11" @default.
- W3201909620 creator A5068312131 @default.
- W3201909620 creator A5086561487 @default.
- W3201909620 date "2021-01-01" @default.
- W3201909620 modified "2023-10-14" @default.
- W3201909620 title "A dictionary learning algorithm for compression and reconstruction of streaming data in preset order" @default.
- W3201909620 cites W1890834058 @default.
- W3201909620 cites W1975302688 @default.
- W3201909620 cites W2005089986 @default.
- W3201909620 cites W2005876975 @default.
- W3201909620 cites W2008644337 @default.
- W3201909620 cites W2021345820 @default.
- W3201909620 cites W2105464873 @default.
- W3201909620 cites W2122192562 @default.
- W3201909620 cites W2137937911 @default.
- W3201909620 cites W2139047213 @default.
- W3201909620 cites W2153663612 @default.
- W3201909620 cites W2160547390 @default.
- W3201909620 cites W2163112044 @default.
- W3201909620 cites W2163348288 @default.
- W3201909620 cites W2163398148 @default.
- W3201909620 cites W2167755370 @default.
- W3201909620 cites W2625143103 @default.
- W3201909620 cites W2744398188 @default.
- W3201909620 cites W2792944346 @default.
- W3201909620 cites W2963349467 @default.
- W3201909620 cites W3099438410 @default.
- W3201909620 doi "https://doi.org/10.3934/dcdss.2021102" @default.
- W3201909620 hasPublicationYear "2021" @default.
- W3201909620 type Work @default.
- W3201909620 sameAs 3201909620 @default.
- W3201909620 citedByCount "0" @default.
- W3201909620 crossrefType "journal-article" @default.
- W3201909620 hasAuthorship W3201909620A5068312131 @default.
- W3201909620 hasAuthorship W3201909620A5086561487 @default.
- W3201909620 hasBestOaLocation W32019096201 @default.
- W3201909620 hasConcept C105795698 @default.
- W3201909620 hasConcept C11413529 @default.
- W3201909620 hasConcept C124066611 @default.
- W3201909620 hasConcept C124101348 @default.
- W3201909620 hasConcept C153180895 @default.
- W3201909620 hasConcept C154771677 @default.
- W3201909620 hasConcept C154945302 @default.
- W3201909620 hasConcept C163294075 @default.
- W3201909620 hasConcept C179518139 @default.
- W3201909620 hasConcept C33923547 @default.
- W3201909620 hasConcept C41008148 @default.
- W3201909620 hasConcept C55282118 @default.
- W3201909620 hasConcept C77088390 @default.
- W3201909620 hasConcept C77637269 @default.
- W3201909620 hasConceptScore W3201909620C105795698 @default.
- W3201909620 hasConceptScore W3201909620C11413529 @default.
- W3201909620 hasConceptScore W3201909620C124066611 @default.
- W3201909620 hasConceptScore W3201909620C124101348 @default.
- W3201909620 hasConceptScore W3201909620C153180895 @default.
- W3201909620 hasConceptScore W3201909620C154771677 @default.
- W3201909620 hasConceptScore W3201909620C154945302 @default.
- W3201909620 hasConceptScore W3201909620C163294075 @default.
- W3201909620 hasConceptScore W3201909620C179518139 @default.
- W3201909620 hasConceptScore W3201909620C33923547 @default.
- W3201909620 hasConceptScore W3201909620C41008148 @default.
- W3201909620 hasConceptScore W3201909620C55282118 @default.
- W3201909620 hasConceptScore W3201909620C77088390 @default.
- W3201909620 hasConceptScore W3201909620C77637269 @default.
- W3201909620 hasIssue "0" @default.
- W3201909620 hasLocation W32019096201 @default.
- W3201909620 hasLocation W32019096202 @default.
- W3201909620 hasOpenAccess W3201909620 @default.
- W3201909620 hasPrimaryLocation W32019096201 @default.
- W3201909620 hasRelatedWork W1995401884 @default.
- W3201909620 hasRelatedWork W2009766461 @default.
- W3201909620 hasRelatedWork W2034957211 @default.
- W3201909620 hasRelatedWork W2040833328 @default.
- W3201909620 hasRelatedWork W2079710880 @default.
- W3201909620 hasRelatedWork W2157785665 @default.
- W3201909620 hasRelatedWork W2392695249 @default.
- W3201909620 hasRelatedWork W2755148445 @default.
- W3201909620 hasRelatedWork W2776275599 @default.
- W3201909620 hasRelatedWork W3002372064 @default.
- W3201909620 hasVolume "0" @default.
- W3201909620 isParatext "false" @default.
- W3201909620 isRetracted "false" @default.
- W3201909620 magId "3201909620" @default.
- W3201909620 workType "article" @default.