Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201909745> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3201909745 endingPage "1059" @default.
- W3201909745 startingPage "1051" @default.
- W3201909745 abstract "Letters of recommendation (LoRs) play an important role in resident selection. Author language varies implicitly toward male and female applicants. We examined gender bias in LoRs written for surgical residency candidates across three decades at one institution.Retrospective analysis of LoRs written for general surgery residency candidates between 1980 and 2011 using artificial intelligence (AI) to conduct natural language processing (NLP) and sentiment analysis, and computer-based algorithms to detect gender bias. Applicants were grouped by scaled clerkship grades and USMLE scores. Data were analyzed among groups with t-tests, ANOVA, and non-parametric tests, as appropriate.A total of 611 LoRs were analyzed for 171 applicants (16.4% female), and 95.3% of letter authors were male. Scaled USMLE scores and clerkship grades (SCG) were similar for both genders (p > 0.05 for both). Average word count for all letters was 290 words and was not significantly different between genders (p = 0.18). LoRs written before 2000 were significantly shorter than those written after, among applicants of both genders (female p = 0.004; male p < 0.001). Gender bias analysis of female LoRs revealed more gendered wording compared to male LoRs (p = 0.04) and was most prominent among females with lower SCG (9.5 vs 5.1, p = 0.01). Sentiment analysis revealed male LoRs with female authors had significantly more positive sentiment compared to female LoRs (p = 0.02), and males with higher SCG had more positive sentiment compared to those with lower SCG (9.4 vs 8.2, p = 0.03). NLP detected more fear in male LoRs with lower SCGs (0.11 vs 0.09, p = 0.02). Female LoRs with higher SCGs had more positive sentiment (0.78 vs 0.83, p = 0.03) and joy (0.60 vs 0.63, p = 0.02), although those written before 2000 had less joy (0.5 vs 0.63, p = 0.006).AI and computer-based algorithms detected linguistic differences and gender bias in LoRs written for general surgery residency applicants, even following stratification by clerkship grades and when analyzed by decade." @default.
- W3201909745 created "2021-10-11" @default.
- W3201909745 creator A5009906547 @default.
- W3201909745 creator A5027615046 @default.
- W3201909745 creator A5050497594 @default.
- W3201909745 creator A5050932667 @default.
- W3201909745 date "2021-12-01" @default.
- W3201909745 modified "2023-10-11" @default.
- W3201909745 title "Use of artificial intelligence for gender bias analysis in letters of recommendation for general surgery residency candidates" @default.
- W3201909745 cites W1992098338 @default.
- W3201909745 cites W2095496835 @default.
- W3201909745 cites W2102614574 @default.
- W3201909745 cites W2109792558 @default.
- W3201909745 cites W2215376118 @default.
- W3201909745 cites W2529041930 @default.
- W3201909745 cites W2541280461 @default.
- W3201909745 cites W2582188803 @default.
- W3201909745 cites W2740382501 @default.
- W3201909745 cites W2767700839 @default.
- W3201909745 cites W2887073707 @default.
- W3201909745 cites W2906822960 @default.
- W3201909745 cites W2909944322 @default.
- W3201909745 cites W2911462778 @default.
- W3201909745 cites W2968586809 @default.
- W3201909745 cites W2997917532 @default.
- W3201909745 doi "https://doi.org/10.1016/j.amjsurg.2021.09.034" @default.
- W3201909745 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34674847" @default.
- W3201909745 hasPublicationYear "2021" @default.
- W3201909745 type Work @default.
- W3201909745 sameAs 3201909745 @default.
- W3201909745 citedByCount "14" @default.
- W3201909745 countsByYear W32019097452021 @default.
- W3201909745 countsByYear W32019097452022 @default.
- W3201909745 countsByYear W32019097452023 @default.
- W3201909745 crossrefType "journal-article" @default.
- W3201909745 hasAuthorship W3201909745A5009906547 @default.
- W3201909745 hasAuthorship W3201909745A5027615046 @default.
- W3201909745 hasAuthorship W3201909745A5050497594 @default.
- W3201909745 hasAuthorship W3201909745A5050932667 @default.
- W3201909745 hasConcept C126322002 @default.
- W3201909745 hasConcept C144024400 @default.
- W3201909745 hasConcept C149923435 @default.
- W3201909745 hasConcept C15744967 @default.
- W3201909745 hasConcept C2779741528 @default.
- W3201909745 hasConcept C2983427547 @default.
- W3201909745 hasConcept C2993838110 @default.
- W3201909745 hasConcept C509550671 @default.
- W3201909745 hasConcept C71924100 @default.
- W3201909745 hasConcept C77805123 @default.
- W3201909745 hasConcept C99476002 @default.
- W3201909745 hasConceptScore W3201909745C126322002 @default.
- W3201909745 hasConceptScore W3201909745C144024400 @default.
- W3201909745 hasConceptScore W3201909745C149923435 @default.
- W3201909745 hasConceptScore W3201909745C15744967 @default.
- W3201909745 hasConceptScore W3201909745C2779741528 @default.
- W3201909745 hasConceptScore W3201909745C2983427547 @default.
- W3201909745 hasConceptScore W3201909745C2993838110 @default.
- W3201909745 hasConceptScore W3201909745C509550671 @default.
- W3201909745 hasConceptScore W3201909745C71924100 @default.
- W3201909745 hasConceptScore W3201909745C77805123 @default.
- W3201909745 hasConceptScore W3201909745C99476002 @default.
- W3201909745 hasIssue "6" @default.
- W3201909745 hasLocation W32019097451 @default.
- W3201909745 hasLocation W32019097452 @default.
- W3201909745 hasOpenAccess W3201909745 @default.
- W3201909745 hasPrimaryLocation W32019097451 @default.
- W3201909745 hasRelatedWork W1989351264 @default.
- W3201909745 hasRelatedWork W2071473668 @default.
- W3201909745 hasRelatedWork W2084943826 @default.
- W3201909745 hasRelatedWork W2112266514 @default.
- W3201909745 hasRelatedWork W2406200327 @default.
- W3201909745 hasRelatedWork W2616358394 @default.
- W3201909745 hasRelatedWork W2756681046 @default.
- W3201909745 hasRelatedWork W4210302544 @default.
- W3201909745 hasRelatedWork W4361272925 @default.
- W3201909745 hasRelatedWork W2518921949 @default.
- W3201909745 hasVolume "222" @default.
- W3201909745 isParatext "false" @default.
- W3201909745 isRetracted "false" @default.
- W3201909745 magId "3201909745" @default.
- W3201909745 workType "article" @default.