Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201913426> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3201913426 abstract "Abstract Objectives This paper proposed the neural network-based segmentation model using Pre-trained Mask Convolutional Neural Network (CNN) with VGG-19 architecture. Since ovarian is very tiny tissue, it needs to be segmented with higher accuracy from the annotated image of ovary images collected in dataset. This model is proposed to predict and suppress the illness early and to correctly diagnose it, helping the doctor save the patient's life. Methods The paper uses the neural network based segmentation using Pre-trained Mask CNN integrated with VGG-19 NN architecture for CNN to enhance the ovarian cancer prediction and diagnosis. Results Proposed segmentation using hybrid neural network of CNN will provide higher accuracy when compared with logistic regression, Gaussian naïve Bayes, and random Forest and Support Vector Machine (SVM) classifiers." @default.
- W3201913426 created "2021-10-11" @default.
- W3201913426 creator A5016556291 @default.
- W3201913426 creator A5091901553 @default.
- W3201913426 date "2021-09-29" @default.
- W3201913426 modified "2023-09-30" @default.
- W3201913426 title "Ovarian cancer diagnosis using pretrained mask CNN-based segmentation with VGG-19 architecture" @default.
- W3201913426 cites W1988714622 @default.
- W3201913426 cites W2129965397 @default.
- W3201913426 cites W2152742787 @default.
- W3201913426 cites W2163215699 @default.
- W3201913426 cites W2790246571 @default.
- W3201913426 cites W2792769372 @default.
- W3201913426 cites W2892004104 @default.
- W3201913426 cites W2899491031 @default.
- W3201913426 cites W2949573065 @default.
- W3201913426 cites W3040330323 @default.
- W3201913426 cites W3167033318 @default.
- W3201913426 cites W4232268818 @default.
- W3201913426 cites W4242882744 @default.
- W3201913426 cites W4253297095 @default.
- W3201913426 cites W4256106076 @default.
- W3201913426 cites W2912562816 @default.
- W3201913426 doi "https://doi.org/10.1515/bams-2021-0098" @default.
- W3201913426 hasPublicationYear "2021" @default.
- W3201913426 type Work @default.
- W3201913426 sameAs 3201913426 @default.
- W3201913426 citedByCount "2" @default.
- W3201913426 countsByYear W32019134262022 @default.
- W3201913426 crossrefType "journal-article" @default.
- W3201913426 hasAuthorship W3201913426A5016556291 @default.
- W3201913426 hasAuthorship W3201913426A5091901553 @default.
- W3201913426 hasConcept C119857082 @default.
- W3201913426 hasConcept C12267149 @default.
- W3201913426 hasConcept C153180895 @default.
- W3201913426 hasConcept C154945302 @default.
- W3201913426 hasConcept C169258074 @default.
- W3201913426 hasConcept C41008148 @default.
- W3201913426 hasConcept C50644808 @default.
- W3201913426 hasConcept C52001869 @default.
- W3201913426 hasConcept C81363708 @default.
- W3201913426 hasConcept C89600930 @default.
- W3201913426 hasConceptScore W3201913426C119857082 @default.
- W3201913426 hasConceptScore W3201913426C12267149 @default.
- W3201913426 hasConceptScore W3201913426C153180895 @default.
- W3201913426 hasConceptScore W3201913426C154945302 @default.
- W3201913426 hasConceptScore W3201913426C169258074 @default.
- W3201913426 hasConceptScore W3201913426C41008148 @default.
- W3201913426 hasConceptScore W3201913426C50644808 @default.
- W3201913426 hasConceptScore W3201913426C52001869 @default.
- W3201913426 hasConceptScore W3201913426C81363708 @default.
- W3201913426 hasConceptScore W3201913426C89600930 @default.
- W3201913426 hasIssue "0" @default.
- W3201913426 hasLocation W32019134261 @default.
- W3201913426 hasOpenAccess W3201913426 @default.
- W3201913426 hasPrimaryLocation W32019134261 @default.
- W3201913426 hasRelatedWork W2985924212 @default.
- W3201913426 hasRelatedWork W2996933976 @default.
- W3201913426 hasRelatedWork W3108448481 @default.
- W3201913426 hasRelatedWork W3168994312 @default.
- W3201913426 hasRelatedWork W3195168932 @default.
- W3201913426 hasRelatedWork W4221021152 @default.
- W3201913426 hasRelatedWork W4377964522 @default.
- W3201913426 hasRelatedWork W4381235817 @default.
- W3201913426 hasRelatedWork W4384345534 @default.
- W3201913426 hasRelatedWork W4387055688 @default.
- W3201913426 hasVolume "0" @default.
- W3201913426 isParatext "false" @default.
- W3201913426 isRetracted "false" @default.
- W3201913426 magId "3201913426" @default.
- W3201913426 workType "article" @default.