Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201922833> ?p ?o ?g. }
- W3201922833 endingPage "108346" @default.
- W3201922833 startingPage "108346" @default.
- W3201922833 abstract "Least squares regression (LSR) is an important machine learning method for feature extraction, feature selection, and image classification. For the training samples, there are correlations among samples from the same class. Therefore, many LSR-based methods utilize this property to pursue discriminative representation. However, if the training samples contain noise or outliers, it will be hard to obtain the exact inter-class correlation. To address this problem, in this paper, a novel LSR-based method is proposed, named low-rank inter-class sparsity based semi-flexible target least squares regression (LIS_StLSR). Firstly, the low-rank representation method is utilized to achieve the intrinsic characteristics of the training samples. Afterwards, the low-rank inter-class sparsity constraint is used to force the projected data to have an exact common sparsity structure in each class, which will be robust to noise and outliers in the training samples. This step can also reduce margins of samples from the same class and enlarge margins of samples from different classes to make the projection matrix discriminative. The low-rank representation and the discriminative projection matrix are jointly learned such that they can be boosted mutually. Moreover, a semi-flexible regression target matrix is introduced to measure the regression error more accurately, thus the regression performance can be enhanced to improve the classification accuracy. Experiments are implemented on the different databases of Yale B, AR, LFW, CASIA NIR-VIS, 15-Scene SPF, COIL-20, and Caltech 101, illustrating that the proposed LIS_StLSR outperforms many state-of-the-art methods." @default.
- W3201922833 created "2021-10-11" @default.
- W3201922833 creator A5006822798 @default.
- W3201922833 creator A5048088901 @default.
- W3201922833 creator A5060755096 @default.
- W3201922833 date "2022-03-01" @default.
- W3201922833 modified "2023-10-18" @default.
- W3201922833 title "Low-rank inter-class sparsity based semi-flexible target least squares regression for feature representation" @default.
- W3201922833 cites W1166921479 @default.
- W3201922833 cites W1963932623 @default.
- W3201922833 cites W1996232089 @default.
- W3201922833 cites W1997201895 @default.
- W3201922833 cites W2000904666 @default.
- W3201922833 cites W2004427069 @default.
- W3201922833 cites W2043080228 @default.
- W3201922833 cites W2097486709 @default.
- W3201922833 cites W2123921160 @default.
- W3201922833 cites W2129812935 @default.
- W3201922833 cites W2132467081 @default.
- W3201922833 cites W2138695073 @default.
- W3201922833 cites W2145152441 @default.
- W3201922833 cites W2194775991 @default.
- W3201922833 cites W2205061450 @default.
- W3201922833 cites W2474608001 @default.
- W3201922833 cites W2608544185 @default.
- W3201922833 cites W2612496192 @default.
- W3201922833 cites W2616654950 @default.
- W3201922833 cites W2772147448 @default.
- W3201922833 cites W2780100774 @default.
- W3201922833 cites W2791052411 @default.
- W3201922833 cites W2792991240 @default.
- W3201922833 cites W2794208501 @default.
- W3201922833 cites W2795017224 @default.
- W3201922833 cites W2799460201 @default.
- W3201922833 cites W2905937268 @default.
- W3201922833 cites W2906529026 @default.
- W3201922833 cites W2959482287 @default.
- W3201922833 cites W2963128427 @default.
- W3201922833 cites W2994840989 @default.
- W3201922833 cites W3015245801 @default.
- W3201922833 cites W3021342796 @default.
- W3201922833 cites W3089651749 @default.
- W3201922833 cites W3099945807 @default.
- W3201922833 cites W3112882234 @default.
- W3201922833 cites W4234698323 @default.
- W3201922833 doi "https://doi.org/10.1016/j.patcog.2021.108346" @default.
- W3201922833 hasPublicationYear "2022" @default.
- W3201922833 type Work @default.
- W3201922833 sameAs 3201922833 @default.
- W3201922833 citedByCount "9" @default.
- W3201922833 countsByYear W32019228332022 @default.
- W3201922833 countsByYear W32019228332023 @default.
- W3201922833 crossrefType "journal-article" @default.
- W3201922833 hasAuthorship W3201922833A5006822798 @default.
- W3201922833 hasAuthorship W3201922833A5048088901 @default.
- W3201922833 hasAuthorship W3201922833A5060755096 @default.
- W3201922833 hasConcept C105795698 @default.
- W3201922833 hasConcept C11413529 @default.
- W3201922833 hasConcept C114614502 @default.
- W3201922833 hasConcept C115961682 @default.
- W3201922833 hasConcept C138885662 @default.
- W3201922833 hasConcept C153180895 @default.
- W3201922833 hasConcept C154945302 @default.
- W3201922833 hasConcept C164226766 @default.
- W3201922833 hasConcept C17744445 @default.
- W3201922833 hasConcept C199539241 @default.
- W3201922833 hasConcept C2776359362 @default.
- W3201922833 hasConcept C2776401178 @default.
- W3201922833 hasConcept C33923547 @default.
- W3201922833 hasConcept C41008148 @default.
- W3201922833 hasConcept C41895202 @default.
- W3201922833 hasConcept C57493831 @default.
- W3201922833 hasConcept C79337645 @default.
- W3201922833 hasConcept C83546350 @default.
- W3201922833 hasConcept C94625758 @default.
- W3201922833 hasConcept C97931131 @default.
- W3201922833 hasConcept C99498987 @default.
- W3201922833 hasConceptScore W3201922833C105795698 @default.
- W3201922833 hasConceptScore W3201922833C11413529 @default.
- W3201922833 hasConceptScore W3201922833C114614502 @default.
- W3201922833 hasConceptScore W3201922833C115961682 @default.
- W3201922833 hasConceptScore W3201922833C138885662 @default.
- W3201922833 hasConceptScore W3201922833C153180895 @default.
- W3201922833 hasConceptScore W3201922833C154945302 @default.
- W3201922833 hasConceptScore W3201922833C164226766 @default.
- W3201922833 hasConceptScore W3201922833C17744445 @default.
- W3201922833 hasConceptScore W3201922833C199539241 @default.
- W3201922833 hasConceptScore W3201922833C2776359362 @default.
- W3201922833 hasConceptScore W3201922833C2776401178 @default.
- W3201922833 hasConceptScore W3201922833C33923547 @default.
- W3201922833 hasConceptScore W3201922833C41008148 @default.
- W3201922833 hasConceptScore W3201922833C41895202 @default.
- W3201922833 hasConceptScore W3201922833C57493831 @default.
- W3201922833 hasConceptScore W3201922833C79337645 @default.
- W3201922833 hasConceptScore W3201922833C83546350 @default.
- W3201922833 hasConceptScore W3201922833C94625758 @default.
- W3201922833 hasConceptScore W3201922833C97931131 @default.
- W3201922833 hasConceptScore W3201922833C99498987 @default.