Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201957712> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3201957712 endingPage "649" @default.
- W3201957712 startingPage "642" @default.
- W3201957712 abstract "Abstract For the time being, smartphone devices rely on direct interaction from the users for unlocking and authentication purposes through implicit authentication systems such as PINs, facial recognition or fingerprint scanning. While different passive two-factor authentication systems based on machine learning were explored in recent work, all require an implicit authentication system. In this study, the focus is to develop and introduce a passive authentication system based on walking patterns. In this scenario, the authentication system continuously authenticates the user in the background, without any further action. To the best of our knowledge, this is the first study in which the data sets are processed with the aim to generate better performing gait-based motion signals. Compared to previous studied work, we employ a processing stage in which we extract tiny frames of data from the motion signals. Our contribution of processing gait data, allows for more robust learning of the subject movement and lowers the number of samples required to classify a user thereafter. Hence, our approach is more robust compared to using raw gait signals. Further, we transform them into gray-scale images for deep neural network training and feature extraction. Conducting the experiments, the empirical results demonstrate that subjects can be identified with a very high accuracy through walking patterns employing the presented techniques. Empirical results outline that a system based on gait data can be utilized as a passive authentication system. Therefore, it is concluded that deep neural networks employing the technique described in this work for gait-based feature representation are well suited for continuous and unobtrusive authentication systems." @default.
- W3201957712 created "2021-10-11" @default.
- W3201957712 creator A5027253560 @default.
- W3201957712 date "2021-01-01" @default.
- W3201957712 modified "2023-09-23" @default.
- W3201957712 title "A Deep Learning Approach to Subject Identification Based on Walking Patterns" @default.
- W3201957712 cites W1483327747 @default.
- W3201957712 cites W1778727116 @default.
- W3201957712 cites W2194775991 @default.
- W3201957712 cites W2295638584 @default.
- W3201957712 cites W2480074974 @default.
- W3201957712 cites W2528287124 @default.
- W3201957712 cites W2610137797 @default.
- W3201957712 cites W2613395272 @default.
- W3201957712 cites W2626839242 @default.
- W3201957712 cites W2798506093 @default.
- W3201957712 cites W2895642264 @default.
- W3201957712 cites W2914010220 @default.
- W3201957712 cites W2944963830 @default.
- W3201957712 cites W2963037989 @default.
- W3201957712 cites W2963674136 @default.
- W3201957712 cites W2964240787 @default.
- W3201957712 cites W2969634467 @default.
- W3201957712 cites W3013854549 @default.
- W3201957712 cites W3014941347 @default.
- W3201957712 cites W3028219535 @default.
- W3201957712 cites W3031452559 @default.
- W3201957712 cites W3083540668 @default.
- W3201957712 cites W3120612975 @default.
- W3201957712 cites W3126279905 @default.
- W3201957712 cites W3128036767 @default.
- W3201957712 cites W4239510810 @default.
- W3201957712 cites W2913249475 @default.
- W3201957712 doi "https://doi.org/10.1016/j.procs.2021.08.066" @default.
- W3201957712 hasPublicationYear "2021" @default.
- W3201957712 type Work @default.
- W3201957712 sameAs 3201957712 @default.
- W3201957712 citedByCount "2" @default.
- W3201957712 countsByYear W32019577122023 @default.
- W3201957712 crossrefType "journal-article" @default.
- W3201957712 hasAuthorship W3201957712A5027253560 @default.
- W3201957712 hasBestOaLocation W32019577121 @default.
- W3201957712 hasConcept C108583219 @default.
- W3201957712 hasConcept C116834253 @default.
- W3201957712 hasConcept C119857082 @default.
- W3201957712 hasConcept C136764020 @default.
- W3201957712 hasConcept C154945302 @default.
- W3201957712 hasConcept C2522767166 @default.
- W3201957712 hasConcept C2777855551 @default.
- W3201957712 hasConcept C41008148 @default.
- W3201957712 hasConcept C59822182 @default.
- W3201957712 hasConcept C86803240 @default.
- W3201957712 hasConceptScore W3201957712C108583219 @default.
- W3201957712 hasConceptScore W3201957712C116834253 @default.
- W3201957712 hasConceptScore W3201957712C119857082 @default.
- W3201957712 hasConceptScore W3201957712C136764020 @default.
- W3201957712 hasConceptScore W3201957712C154945302 @default.
- W3201957712 hasConceptScore W3201957712C2522767166 @default.
- W3201957712 hasConceptScore W3201957712C2777855551 @default.
- W3201957712 hasConceptScore W3201957712C41008148 @default.
- W3201957712 hasConceptScore W3201957712C59822182 @default.
- W3201957712 hasConceptScore W3201957712C86803240 @default.
- W3201957712 hasLocation W32019577121 @default.
- W3201957712 hasOpenAccess W3201957712 @default.
- W3201957712 hasPrimaryLocation W32019577121 @default.
- W3201957712 hasRelatedWork W2922457425 @default.
- W3201957712 hasRelatedWork W3009238340 @default.
- W3201957712 hasRelatedWork W3014300295 @default.
- W3201957712 hasRelatedWork W3079760979 @default.
- W3201957712 hasRelatedWork W3164822677 @default.
- W3201957712 hasRelatedWork W3215138031 @default.
- W3201957712 hasRelatedWork W4210805261 @default.
- W3201957712 hasRelatedWork W4223943233 @default.
- W3201957712 hasRelatedWork W4250304930 @default.
- W3201957712 hasRelatedWork W4299487748 @default.
- W3201957712 hasVolume "192" @default.
- W3201957712 isParatext "false" @default.
- W3201957712 isRetracted "false" @default.
- W3201957712 magId "3201957712" @default.
- W3201957712 workType "article" @default.