Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201966249> ?p ?o ?g. }
- W3201966249 endingPage "28" @default.
- W3201966249 startingPage "1" @default.
- W3201966249 abstract "Social recommendation has achieved great success in many domains including e-commerce and location-based social networks. Existing methods usually explore the user-item interactions or user-user connections to predict users’ preference behaviors. However, they usually learn both user and item representations in Euclidean space, which has large limitations for exploring the latent hierarchical property in the data. In this article, we study a novel problem of hyperbolic social recommendation, where we aim to learn the compact but strong representations for both users and items. Meanwhile, this work also addresses two critical domain-issues, which are under-explored. First, users often make trade-offs with multiple underlying aspect factors to make decisions during their interactions with items. Second, users generally build connections with others in terms of different aspects, which produces different influences with aspects in social network. To this end, we propose a novel graph neural network (GNN) framework with multiple aspect learning, namely, HyperSoRec. Specifically, we first embed all users, items, and aspects into hyperbolic space with superior representations to ensure their hierarchical properties. Then, we adapt a GNN with novel multi-aspect message-passing-receiving mechanism to capture different influences among users. Next, to characterize the multi-aspect interactions of users on items, we propose an adaptive hyperbolic metric learning method by introducing learnable interactive relations among different aspects. Finally, we utilize the hyperbolic translational distance to measure the plausibility in each user-item pair for recommendation. Experimental results on two public datasets clearly demonstrate that our HyperSoRec not only achieves significant improvement for recommendation performance but also shows better representation ability in hyperbolic space with strong robustness and reliability." @default.
- W3201966249 created "2021-10-11" @default.
- W3201966249 creator A5010423479 @default.
- W3201966249 creator A5035232233 @default.
- W3201966249 creator A5068658471 @default.
- W3201966249 creator A5075147369 @default.
- W3201966249 creator A5075925243 @default.
- W3201966249 creator A5085496384 @default.
- W3201966249 date "2021-09-27" @default.
- W3201966249 modified "2023-09-27" @default.
- W3201966249 title "HyperSoRec: Exploiting Hyperbolic User and Item Representations with Multiple Aspects for Social-aware Recommendation" @default.
- W3201966249 cites W114517082 @default.
- W3201966249 cites W1991055526 @default.
- W3201966249 cites W1994226161 @default.
- W3201966249 cites W2017921654 @default.
- W3201966249 cites W2042281163 @default.
- W3201966249 cites W2045563097 @default.
- W3201966249 cites W2066653584 @default.
- W3201966249 cites W2067072670 @default.
- W3201966249 cites W2089394015 @default.
- W3201966249 cites W2107625277 @default.
- W3201966249 cites W2108598243 @default.
- W3201966249 cites W2116341502 @default.
- W3201966249 cites W2119825970 @default.
- W3201966249 cites W2125003829 @default.
- W3201966249 cites W2130354913 @default.
- W3201966249 cites W2135598826 @default.
- W3201966249 cites W2295739661 @default.
- W3201966249 cites W2320086037 @default.
- W3201966249 cites W2472954632 @default.
- W3201966249 cites W2509678028 @default.
- W3201966249 cites W2583875861 @default.
- W3201966249 cites W2605350416 @default.
- W3201966249 cites W2708423399 @default.
- W3201966249 cites W2735108298 @default.
- W3201966249 cites W2791723757 @default.
- W3201966249 cites W2792805964 @default.
- W3201966249 cites W2793768763 @default.
- W3201966249 cites W2798908418 @default.
- W3201966249 cites W2900229157 @default.
- W3201966249 cites W2904510605 @default.
- W3201966249 cites W2907827821 @default.
- W3201966249 cites W2908027240 @default.
- W3201966249 cites W2914721378 @default.
- W3201966249 cites W2951554414 @default.
- W3201966249 cites W2955931418 @default.
- W3201966249 cites W2963323306 @default.
- W3201966249 cites W2979057167 @default.
- W3201966249 cites W2998128907 @default.
- W3201966249 cites W3009464535 @default.
- W3201966249 cites W3012666319 @default.
- W3201966249 cites W3012952868 @default.
- W3201966249 cites W3021176691 @default.
- W3201966249 cites W3034992133 @default.
- W3201966249 cites W3035147733 @default.
- W3201966249 cites W3045200674 @default.
- W3201966249 cites W3080292238 @default.
- W3201966249 cites W3081170586 @default.
- W3201966249 cites W3084632828 @default.
- W3201966249 cites W3098934552 @default.
- W3201966249 cites W3100278010 @default.
- W3201966249 cites W3100591234 @default.
- W3201966249 cites W3100848837 @default.
- W3201966249 cites W3101397996 @default.
- W3201966249 cites W3119582991 @default.
- W3201966249 cites W4288110918 @default.
- W3201966249 cites W4301312111 @default.
- W3201966249 cites W2990670023 @default.
- W3201966249 doi "https://doi.org/10.1145/3463913" @default.
- W3201966249 hasPublicationYear "2021" @default.
- W3201966249 type Work @default.
- W3201966249 sameAs 3201966249 @default.
- W3201966249 citedByCount "16" @default.
- W3201966249 countsByYear W32019662492021 @default.
- W3201966249 countsByYear W32019662492022 @default.
- W3201966249 countsByYear W32019662492023 @default.
- W3201966249 crossrefType "journal-article" @default.
- W3201966249 hasAuthorship W3201966249A5010423479 @default.
- W3201966249 hasAuthorship W3201966249A5035232233 @default.
- W3201966249 hasAuthorship W3201966249A5068658471 @default.
- W3201966249 hasAuthorship W3201966249A5075147369 @default.
- W3201966249 hasAuthorship W3201966249A5075925243 @default.
- W3201966249 hasAuthorship W3201966249A5085496384 @default.
- W3201966249 hasConcept C111919701 @default.
- W3201966249 hasConcept C132525143 @default.
- W3201966249 hasConcept C136764020 @default.
- W3201966249 hasConcept C154945302 @default.
- W3201966249 hasConcept C162324750 @default.
- W3201966249 hasConcept C175444787 @default.
- W3201966249 hasConcept C176217482 @default.
- W3201966249 hasConcept C202444582 @default.
- W3201966249 hasConcept C21547014 @default.
- W3201966249 hasConcept C23123220 @default.
- W3201966249 hasConcept C2778572836 @default.
- W3201966249 hasConcept C2781249084 @default.
- W3201966249 hasConcept C33923547 @default.
- W3201966249 hasConcept C41008148 @default.
- W3201966249 hasConcept C4727928 @default.