Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201968211> ?p ?o ?g. }
- W3201968211 abstract "Hypertension is a widespread chronic disease. Risk prediction of hypertension is an intervention that contributes to the early prevention and management of hypertension. The implementation of such intervention requires an effective and easy-to-implement hypertension risk prediction model. This study evaluated and compared the performance of four machine learning algorithms on predicting the risk of hypertension based on easy-to-collect risk factors. A dataset of 29,700 samples collected through a physical examination was used for model training and testing. Firstly, we identified easy-to-collect risk factors of hypertension, through univariate logistic regression analysis. Then, based on the selected features, 10-fold cross-validation was utilized to optimize four models, random forest (RF), CatBoost, MLP neural network and logistic regression (LR), to find the best hyper-parameters on the training set. Finally, the performance of models was evaluated by AUC, accuracy, sensitivity and specificity on the test set. The experimental results showed that the RF model outperformed the other three models, and achieved an AUC of 0.92, an accuracy of 0.82, a sensitivity of 0.83 and a specificity of 0.81. In addition, Body Mass Index (BMI), age, family history and waist circumference (WC) are the four primary risk factors of hypertension. These findings reveal that it is feasible to use machine learning algorithms, especially RF, to predict hypertension risk without clinical or genetic data. The technique can provide a non-invasive and economical way for the prevention and management of hypertension in a large population." @default.
- W3201968211 created "2021-10-11" @default.
- W3201968211 creator A5009953160 @default.
- W3201968211 creator A5014490044 @default.
- W3201968211 creator A5017179792 @default.
- W3201968211 creator A5022148157 @default.
- W3201968211 creator A5025247782 @default.
- W3201968211 creator A5063880073 @default.
- W3201968211 creator A5078657799 @default.
- W3201968211 date "2021-09-24" @default.
- W3201968211 modified "2023-10-17" @default.
- W3201968211 title "Predicting the Risk of Hypertension Based on Several Easy-to-Collect Risk Factors: A Machine Learning Method" @default.
- W3201968211 cites W1494846899 @default.
- W3201968211 cites W1868114841 @default.
- W3201968211 cites W1996299251 @default.
- W3201968211 cites W2024429170 @default.
- W3201968211 cites W2041652340 @default.
- W3201968211 cites W2063928557 @default.
- W3201968211 cites W2110882343 @default.
- W3201968211 cites W2130372754 @default.
- W3201968211 cites W2131951100 @default.
- W3201968211 cites W2133336641 @default.
- W3201968211 cites W2133844560 @default.
- W3201968211 cites W2159692232 @default.
- W3201968211 cites W2160109513 @default.
- W3201968211 cites W2164339440 @default.
- W3201968211 cites W2261059368 @default.
- W3201968211 cites W2513758163 @default.
- W3201968211 cites W2552678868 @default.
- W3201968211 cites W2554948173 @default.
- W3201968211 cites W2555938547 @default.
- W3201968211 cites W2561779441 @default.
- W3201968211 cites W2664267452 @default.
- W3201968211 cites W2767131249 @default.
- W3201968211 cites W2767502029 @default.
- W3201968211 cites W2769340134 @default.
- W3201968211 cites W2791578753 @default.
- W3201968211 cites W2793329225 @default.
- W3201968211 cites W2805729772 @default.
- W3201968211 cites W2812840717 @default.
- W3201968211 cites W2897277953 @default.
- W3201968211 cites W2899711892 @default.
- W3201968211 cites W2909707045 @default.
- W3201968211 cites W2911964244 @default.
- W3201968211 cites W2914336845 @default.
- W3201968211 cites W2963141875 @default.
- W3201968211 cites W2965758349 @default.
- W3201968211 cites W2967638737 @default.
- W3201968211 cites W2986446268 @default.
- W3201968211 cites W2987646559 @default.
- W3201968211 cites W2991968828 @default.
- W3201968211 cites W2996303202 @default.
- W3201968211 cites W2997308669 @default.
- W3201968211 cites W3013490375 @default.
- W3201968211 cites W3016759068 @default.
- W3201968211 cites W3020270419 @default.
- W3201968211 cites W3033460565 @default.
- W3201968211 cites W3033697969 @default.
- W3201968211 doi "https://doi.org/10.3389/fpubh.2021.619429" @default.
- W3201968211 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8497705" @default.
- W3201968211 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34631636" @default.
- W3201968211 hasPublicationYear "2021" @default.
- W3201968211 type Work @default.
- W3201968211 sameAs 3201968211 @default.
- W3201968211 citedByCount "16" @default.
- W3201968211 countsByYear W32019682112022 @default.
- W3201968211 countsByYear W32019682112023 @default.
- W3201968211 crossrefType "journal-article" @default.
- W3201968211 hasAuthorship W3201968211A5009953160 @default.
- W3201968211 hasAuthorship W3201968211A5014490044 @default.
- W3201968211 hasAuthorship W3201968211A5017179792 @default.
- W3201968211 hasAuthorship W3201968211A5022148157 @default.
- W3201968211 hasAuthorship W3201968211A5025247782 @default.
- W3201968211 hasAuthorship W3201968211A5063880073 @default.
- W3201968211 hasAuthorship W3201968211A5078657799 @default.
- W3201968211 hasBestOaLocation W32019682111 @default.
- W3201968211 hasConcept C119857082 @default.
- W3201968211 hasConcept C126322002 @default.
- W3201968211 hasConcept C151956035 @default.
- W3201968211 hasConcept C154945302 @default.
- W3201968211 hasConcept C161584116 @default.
- W3201968211 hasConcept C169258074 @default.
- W3201968211 hasConcept C169903167 @default.
- W3201968211 hasConcept C199163554 @default.
- W3201968211 hasConcept C2776193436 @default.
- W3201968211 hasConcept C2780221984 @default.
- W3201968211 hasConcept C2908647359 @default.
- W3201968211 hasConcept C41008148 @default.
- W3201968211 hasConcept C45804977 @default.
- W3201968211 hasConcept C50644808 @default.
- W3201968211 hasConcept C71924100 @default.
- W3201968211 hasConcept C99454951 @default.
- W3201968211 hasConceptScore W3201968211C119857082 @default.
- W3201968211 hasConceptScore W3201968211C126322002 @default.
- W3201968211 hasConceptScore W3201968211C151956035 @default.
- W3201968211 hasConceptScore W3201968211C154945302 @default.
- W3201968211 hasConceptScore W3201968211C161584116 @default.
- W3201968211 hasConceptScore W3201968211C169258074 @default.
- W3201968211 hasConceptScore W3201968211C169903167 @default.
- W3201968211 hasConceptScore W3201968211C199163554 @default.