Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201969467> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3201969467 endingPage "180" @default.
- W3201969467 startingPage "168" @default.
- W3201969467 abstract "Regression problems have been widely studied in machine learning literature resulting in a plethora of regression models and performance measures. However, there are few techniques specially dedicated to solve the problem of how to incorporate categorical features to regression problems. Usually, categorical feature encoders are general enough to cover both classification and regression problems. This lack of specificity results in underperforming regression models. In this paper, we provide an in-depth analysis of how to tackle high cardinality categorical features with the quantile. Our proposal outperforms state-of-the-art encoders, including the traditional statistical mean target encoder, when considering the Mean Absolute Error, especially in the presence of long-tailed or skewed distributions. Besides, to deal with possible overfitting when there are categories with small support, our encoder benefits from additive smoothing. Finally, we describe how to expand the encoded values by creating a set of features with different quantiles. This expanded encoder provides a more informative output about the categorical feature in question, further boosting the performance of the regression model." @default.
- W3201969467 created "2021-10-11" @default.
- W3201969467 creator A5058755772 @default.
- W3201969467 creator A5062467804 @default.
- W3201969467 creator A5069070420 @default.
- W3201969467 creator A5091099873 @default.
- W3201969467 date "2021-01-01" @default.
- W3201969467 modified "2023-10-09" @default.
- W3201969467 title "Quantile Encoder: Tackling High Cardinality Categorical Features in Regression Problems" @default.
- W3201969467 cites W1602363634 @default.
- W3201969467 cites W1981457167 @default.
- W3201969467 cites W1983607152 @default.
- W3201969467 cites W1990836268 @default.
- W3201969467 cites W1991769471 @default.
- W3201969467 cites W2122825543 @default.
- W3201969467 cites W2316874498 @default.
- W3201969467 cites W4252684946 @default.
- W3201969467 cites W4298401804 @default.
- W3201969467 cites W4299551239 @default.
- W3201969467 cites W4362223627 @default.
- W3201969467 doi "https://doi.org/10.1007/978-3-030-85529-1_14" @default.
- W3201969467 hasPublicationYear "2021" @default.
- W3201969467 type Work @default.
- W3201969467 sameAs 3201969467 @default.
- W3201969467 citedByCount "5" @default.
- W3201969467 countsByYear W32019694672021 @default.
- W3201969467 countsByYear W32019694672022 @default.
- W3201969467 countsByYear W32019694672023 @default.
- W3201969467 crossrefType "book-chapter" @default.
- W3201969467 hasAuthorship W3201969467A5058755772 @default.
- W3201969467 hasAuthorship W3201969467A5062467804 @default.
- W3201969467 hasAuthorship W3201969467A5069070420 @default.
- W3201969467 hasAuthorship W3201969467A5091099873 @default.
- W3201969467 hasBestOaLocation W32019694672 @default.
- W3201969467 hasConcept C105795698 @default.
- W3201969467 hasConcept C119857082 @default.
- W3201969467 hasConcept C124101348 @default.
- W3201969467 hasConcept C138885662 @default.
- W3201969467 hasConcept C152877465 @default.
- W3201969467 hasConcept C153180895 @default.
- W3201969467 hasConcept C154945302 @default.
- W3201969467 hasConcept C22019652 @default.
- W3201969467 hasConcept C2776401178 @default.
- W3201969467 hasConcept C33923547 @default.
- W3201969467 hasConcept C41008148 @default.
- W3201969467 hasConcept C41895202 @default.
- W3201969467 hasConcept C46686674 @default.
- W3201969467 hasConcept C50644808 @default.
- W3201969467 hasConcept C5274069 @default.
- W3201969467 hasConcept C63817138 @default.
- W3201969467 hasConcept C83546350 @default.
- W3201969467 hasConcept C87117476 @default.
- W3201969467 hasConceptScore W3201969467C105795698 @default.
- W3201969467 hasConceptScore W3201969467C119857082 @default.
- W3201969467 hasConceptScore W3201969467C124101348 @default.
- W3201969467 hasConceptScore W3201969467C138885662 @default.
- W3201969467 hasConceptScore W3201969467C152877465 @default.
- W3201969467 hasConceptScore W3201969467C153180895 @default.
- W3201969467 hasConceptScore W3201969467C154945302 @default.
- W3201969467 hasConceptScore W3201969467C22019652 @default.
- W3201969467 hasConceptScore W3201969467C2776401178 @default.
- W3201969467 hasConceptScore W3201969467C33923547 @default.
- W3201969467 hasConceptScore W3201969467C41008148 @default.
- W3201969467 hasConceptScore W3201969467C41895202 @default.
- W3201969467 hasConceptScore W3201969467C46686674 @default.
- W3201969467 hasConceptScore W3201969467C50644808 @default.
- W3201969467 hasConceptScore W3201969467C5274069 @default.
- W3201969467 hasConceptScore W3201969467C63817138 @default.
- W3201969467 hasConceptScore W3201969467C83546350 @default.
- W3201969467 hasConceptScore W3201969467C87117476 @default.
- W3201969467 hasLocation W32019694671 @default.
- W3201969467 hasLocation W32019694672 @default.
- W3201969467 hasOpenAccess W3201969467 @default.
- W3201969467 hasPrimaryLocation W32019694671 @default.
- W3201969467 hasRelatedWork W1487831638 @default.
- W3201969467 hasRelatedWork W1996541855 @default.
- W3201969467 hasRelatedWork W2767651786 @default.
- W3201969467 hasRelatedWork W2989932438 @default.
- W3201969467 hasRelatedWork W3040783393 @default.
- W3201969467 hasRelatedWork W3099765033 @default.
- W3201969467 hasRelatedWork W4210794429 @default.
- W3201969467 hasRelatedWork W4287726157 @default.
- W3201969467 hasRelatedWork W4381786038 @default.
- W3201969467 hasRelatedWork W4383472812 @default.
- W3201969467 isParatext "false" @default.
- W3201969467 isRetracted "false" @default.
- W3201969467 magId "3201969467" @default.
- W3201969467 workType "book-chapter" @default.