Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201990083> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3201990083 abstract "Breast Cancer (BC) is a cancerous growth that is a result of uncontrolled cell division in the mammary tissues, usually in the ducts and in the lobules. BC is the most dominant fast-growing cancer and one of the leading cause of cancer mortality in women. BC incidents are increasing swiftly every year around the world especially in developing countries due to grown life expectancy and assumption of western culture. The conventional process of detecting BC involves a clinical expert who observed the medical images of affected breast tissues and looks for structural changes, irregularities in cell forms, ordination of cells in the tissue and determining the stage of the cancer. As conventional interpretation is often time consuming, expensive and error prone; computer-aided detection (CAD) technique is used as an alternative to provide a more accurate, automatic, fast and reproducible procedure to detect BC. This research presents a fully automatic process of BC detection. Two well know filter such as Gaussian Blur (GB) and Detail Enhanced (DE) filter has been used here for the preprocessing purpose. Convolutional Neural Network (CNN) classifier has been used here for classification. The proposed model is performed on an openly accessible dataset named Breast Histopathology Image dataset and the outcome exhibits the sharpness of our proposed model. The obtained accuracy is 87.49%, 88.46% and 88.10% in Case-I, Case-II and Case-III, respectively." @default.
- W3201990083 created "2021-10-11" @default.
- W3201990083 creator A5053539434 @default.
- W3201990083 creator A5078289354 @default.
- W3201990083 date "2021-08-23" @default.
- W3201990083 modified "2023-09-27" @default.
- W3201990083 title "Detection and Diagnosis of Breast Cancer Using Deep Learning" @default.
- W3201990083 cites W1545367551 @default.
- W3201990083 cites W1903029394 @default.
- W3201990083 cites W2090675346 @default.
- W3201990083 cites W2112796928 @default.
- W3201990083 cites W2117539524 @default.
- W3201990083 cites W2133458583 @default.
- W3201990083 cites W2219446152 @default.
- W3201990083 cites W2282012421 @default.
- W3201990083 cites W2317417577 @default.
- W3201990083 cites W2472971850 @default.
- W3201990083 cites W2518129376 @default.
- W3201990083 cites W2549006548 @default.
- W3201990083 cites W2577823582 @default.
- W3201990083 cites W2620578070 @default.
- W3201990083 cites W2622826443 @default.
- W3201990083 cites W2624848721 @default.
- W3201990083 cites W2766861616 @default.
- W3201990083 doi "https://doi.org/10.1109/tensymp52854.2021.9550975" @default.
- W3201990083 hasPublicationYear "2021" @default.
- W3201990083 type Work @default.
- W3201990083 sameAs 3201990083 @default.
- W3201990083 citedByCount "1" @default.
- W3201990083 countsByYear W32019900832023 @default.
- W3201990083 crossrefType "proceedings-article" @default.
- W3201990083 hasAuthorship W3201990083A5053539434 @default.
- W3201990083 hasAuthorship W3201990083A5078289354 @default.
- W3201990083 hasConcept C108583219 @default.
- W3201990083 hasConcept C115961682 @default.
- W3201990083 hasConcept C119857082 @default.
- W3201990083 hasConcept C121608353 @default.
- W3201990083 hasConcept C126322002 @default.
- W3201990083 hasConcept C153180895 @default.
- W3201990083 hasConcept C154945302 @default.
- W3201990083 hasConcept C2779549770 @default.
- W3201990083 hasConcept C2780472235 @default.
- W3201990083 hasConcept C34736171 @default.
- W3201990083 hasConcept C41008148 @default.
- W3201990083 hasConcept C530470458 @default.
- W3201990083 hasConcept C65892221 @default.
- W3201990083 hasConcept C71924100 @default.
- W3201990083 hasConcept C81363708 @default.
- W3201990083 hasConcept C95623464 @default.
- W3201990083 hasConceptScore W3201990083C108583219 @default.
- W3201990083 hasConceptScore W3201990083C115961682 @default.
- W3201990083 hasConceptScore W3201990083C119857082 @default.
- W3201990083 hasConceptScore W3201990083C121608353 @default.
- W3201990083 hasConceptScore W3201990083C126322002 @default.
- W3201990083 hasConceptScore W3201990083C153180895 @default.
- W3201990083 hasConceptScore W3201990083C154945302 @default.
- W3201990083 hasConceptScore W3201990083C2779549770 @default.
- W3201990083 hasConceptScore W3201990083C2780472235 @default.
- W3201990083 hasConceptScore W3201990083C34736171 @default.
- W3201990083 hasConceptScore W3201990083C41008148 @default.
- W3201990083 hasConceptScore W3201990083C530470458 @default.
- W3201990083 hasConceptScore W3201990083C65892221 @default.
- W3201990083 hasConceptScore W3201990083C71924100 @default.
- W3201990083 hasConceptScore W3201990083C81363708 @default.
- W3201990083 hasConceptScore W3201990083C95623464 @default.
- W3201990083 hasLocation W32019900831 @default.
- W3201990083 hasOpenAccess W3201990083 @default.
- W3201990083 hasPrimaryLocation W32019900831 @default.
- W3201990083 hasRelatedWork W2337926734 @default.
- W3201990083 hasRelatedWork W2738221750 @default.
- W3201990083 hasRelatedWork W2964383635 @default.
- W3201990083 hasRelatedWork W2977314777 @default.
- W3201990083 hasRelatedWork W2986507176 @default.
- W3201990083 hasRelatedWork W2995914718 @default.
- W3201990083 hasRelatedWork W3156786002 @default.
- W3201990083 hasRelatedWork W4313526617 @default.
- W3201990083 hasRelatedWork W4381487685 @default.
- W3201990083 hasRelatedWork W564581980 @default.
- W3201990083 isParatext "false" @default.
- W3201990083 isRetracted "false" @default.
- W3201990083 magId "3201990083" @default.
- W3201990083 workType "article" @default.