Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201990542> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3201990542 abstract "Abstract Background and Objective Emergency Department (ED) overcrowding is a chronic international issue that is associated with adverse treatment outcomes. Accurate forecasts of future service demand would enable intelligent resource allocation that could alleviate the problem. There has been continued academic interest in ED forecasting but the number of used explanatory variables has been low, limited mainly to calendar and weather variables. In this study we investigate whether predictive accuracy of next day arrivals could be enhanced using high number of potentially relevant explanatory variables and document two feature selection processes that aim to identify which subset of variables is associated with number of next day arrivals. Methods We extracted numbers of total daily arrivals from Tampere University Hospital ED between the time period of June 1, 2015 and June 19, 2019. 158 potential explanatory variables were collected from multiple data sources consisting not only of weather and calendar variables but also an extensive list of local public events, numbers of website visits to two hospital domains, numbers of available hospital beds in 33 local hospitals or health centres and Google trends searches for the ED. We used two feature selection processes: Simulated Annealing (SA) and Floating Search (FS) with Recursive Least Squares (RLS) and Least Mean Squares (LMS). Performance of these approaches was compared against autoregressive integrated moving average (ARIMA), regression with ARIMA errors (ARIMAX) and Random Forest (RF). Mean Absolute Percentage Error (MAPE) was used as the main error metric. Results Calendar variables, load of secondary care facilities and local public events were dominant in the identified predictive features. RLS-SA and RLS-FA provided slightly better accuracy compared ARIMA. ARIMAX was the most accurate model but the difference between RLS-SA and RLS-FA was not statistically significant. Conclusions Our study provides new insight into potential underlying factors associated with number of next day presentations. It also suggests that predictive accuracy of next day arrivals can be increased using high-dimensional feature selection approach when compared to both univariate and nonfiltered high-dimensional approach. However, outperforming ARIMAX remains a challenge when working with daily data. Future work should focus on enhancing the feature selection mechanism, investigating its applicability to other domains and in identifying other potentially relevant explanatory variables." @default.
- W3201990542 created "2021-10-11" @default.
- W3201990542 creator A5014686303 @default.
- W3201990542 creator A5018490229 @default.
- W3201990542 creator A5019836347 @default.
- W3201990542 creator A5042399760 @default.
- W3201990542 creator A5076922631 @default.
- W3201990542 creator A5087242915 @default.
- W3201990542 creator A5091048764 @default.
- W3201990542 date "2021-09-27" @default.
- W3201990542 modified "2023-09-27" @default.
- W3201990542 title "Forecasting Daily Emergency Department Arrivals Using High-Dimensional Multivariate Data: A Feature Selection Approach" @default.
- W3201990542 cites W1227547065 @default.
- W3201990542 cites W125064766 @default.
- W3201990542 cites W2037338427 @default.
- W3201990542 cites W2116512828 @default.
- W3201990542 cites W2150179549 @default.
- W3201990542 cites W2767502650 @default.
- W3201990542 cites W2808519342 @default.
- W3201990542 cites W2888970663 @default.
- W3201990542 cites W2901525782 @default.
- W3201990542 cites W2911964244 @default.
- W3201990542 cites W2921329522 @default.
- W3201990542 cites W2963507686 @default.
- W3201990542 cites W2965743638 @default.
- W3201990542 cites W3087699761 @default.
- W3201990542 cites W3089224581 @default.
- W3201990542 cites W3143340484 @default.
- W3201990542 doi "https://doi.org/10.21203/rs.3.rs-907966/v1" @default.
- W3201990542 hasPublicationYear "2021" @default.
- W3201990542 type Work @default.
- W3201990542 sameAs 3201990542 @default.
- W3201990542 citedByCount "0" @default.
- W3201990542 crossrefType "posted-content" @default.
- W3201990542 hasAuthorship W3201990542A5014686303 @default.
- W3201990542 hasAuthorship W3201990542A5018490229 @default.
- W3201990542 hasAuthorship W3201990542A5019836347 @default.
- W3201990542 hasAuthorship W3201990542A5042399760 @default.
- W3201990542 hasAuthorship W3201990542A5076922631 @default.
- W3201990542 hasAuthorship W3201990542A5087242915 @default.
- W3201990542 hasAuthorship W3201990542A5091048764 @default.
- W3201990542 hasBestOaLocation W32019905421 @default.
- W3201990542 hasConcept C105795698 @default.
- W3201990542 hasConcept C118552586 @default.
- W3201990542 hasConcept C119857082 @default.
- W3201990542 hasConcept C139945424 @default.
- W3201990542 hasConcept C148483581 @default.
- W3201990542 hasConcept C149782125 @default.
- W3201990542 hasConcept C150217764 @default.
- W3201990542 hasConcept C151406439 @default.
- W3201990542 hasConcept C162324750 @default.
- W3201990542 hasConcept C169258074 @default.
- W3201990542 hasConcept C24338571 @default.
- W3201990542 hasConcept C2778872837 @default.
- W3201990542 hasConcept C2780724011 @default.
- W3201990542 hasConcept C33923547 @default.
- W3201990542 hasConcept C41008148 @default.
- W3201990542 hasConcept C50522688 @default.
- W3201990542 hasConcept C71924100 @default.
- W3201990542 hasConceptScore W3201990542C105795698 @default.
- W3201990542 hasConceptScore W3201990542C118552586 @default.
- W3201990542 hasConceptScore W3201990542C119857082 @default.
- W3201990542 hasConceptScore W3201990542C139945424 @default.
- W3201990542 hasConceptScore W3201990542C148483581 @default.
- W3201990542 hasConceptScore W3201990542C149782125 @default.
- W3201990542 hasConceptScore W3201990542C150217764 @default.
- W3201990542 hasConceptScore W3201990542C151406439 @default.
- W3201990542 hasConceptScore W3201990542C162324750 @default.
- W3201990542 hasConceptScore W3201990542C169258074 @default.
- W3201990542 hasConceptScore W3201990542C24338571 @default.
- W3201990542 hasConceptScore W3201990542C2778872837 @default.
- W3201990542 hasConceptScore W3201990542C2780724011 @default.
- W3201990542 hasConceptScore W3201990542C33923547 @default.
- W3201990542 hasConceptScore W3201990542C41008148 @default.
- W3201990542 hasConceptScore W3201990542C50522688 @default.
- W3201990542 hasConceptScore W3201990542C71924100 @default.
- W3201990542 hasLocation W32019905421 @default.
- W3201990542 hasOpenAccess W3201990542 @default.
- W3201990542 hasPrimaryLocation W32019905421 @default.
- W3201990542 hasRelatedWork W2111480483 @default.
- W3201990542 hasRelatedWork W2550089990 @default.
- W3201990542 hasRelatedWork W2948406996 @default.
- W3201990542 hasRelatedWork W2963766945 @default.
- W3201990542 hasRelatedWork W3080840844 @default.
- W3201990542 hasRelatedWork W3088055294 @default.
- W3201990542 hasRelatedWork W3210053092 @default.
- W3201990542 hasRelatedWork W4207046107 @default.
- W3201990542 hasRelatedWork W4280626000 @default.
- W3201990542 hasRelatedWork W4307874644 @default.
- W3201990542 isParatext "false" @default.
- W3201990542 isRetracted "false" @default.
- W3201990542 magId "3201990542" @default.
- W3201990542 workType "article" @default.