Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201992381> ?p ?o ?g. }
- W3201992381 endingPage "1953" @default.
- W3201992381 startingPage "1936" @default.
- W3201992381 abstract "Optimizing the CT acquisition parameters to obtain diagnostic image quality at the lowest possible radiation dose is crucial in the radiosensitive pediatric population. The image quality of low-dose CT can be severely degraded by increased image noise with filtered back projection (FBP) reconstruction. Iterative reconstruction (IR) techniques partially resolve the trade-off relationship between noise and radiation dose but still suffer from degraded noise texture and low-contrast detectability at considerably low-dose settings. Furthermore, sophisticated model-based IR usually requires a long reconstruction time, which restricts its clinical usability. With recent advances in artificial intelligence technology, deep learning–based reconstruction (DLR) has been introduced to overcome the limitations of the FBP and IR approaches and is currently available clinically. DLR incorporates convolutional neural networks—which comprise multiple layers of mathematical equations—into the image reconstruction process to reduce image noise, improve spatial resolution, and preserve preferable noise texture in the CT images. For DLR development, numerous network parameters are iteratively optimized through an extensive learning process to discriminate true attenuation from noise by using low-dose training and high-dose teaching image data. After rigorous validations of network generalizability, the DLR engine can be used to generate high-quality images from low-dose projection data in a short reconstruction time in a clinical environment. Application of the DLR technique allows substantial dose reduction in pediatric CT performed for various clinical indications while preserving the diagnostic image quality. The authors present an overview of the basic concept, technical principles, and image characteristics of DLR and its clinical feasibility for low-dose pediatric CT. ©RSNA, 2021" @default.
- W3201992381 created "2021-10-11" @default.
- W3201992381 creator A5014094130 @default.
- W3201992381 creator A5017660722 @default.
- W3201992381 creator A5024600957 @default.
- W3201992381 creator A5032369983 @default.
- W3201992381 creator A5032643459 @default.
- W3201992381 creator A5043332093 @default.
- W3201992381 creator A5053968188 @default.
- W3201992381 creator A5057900219 @default.
- W3201992381 creator A5078359416 @default.
- W3201992381 creator A5091648023 @default.
- W3201992381 date "2021-11-01" @default.
- W3201992381 modified "2023-10-17" @default.
- W3201992381 title "Deep Learning–based Reconstruction for Lower-Dose Pediatric CT: Technical Principles, Image Characteristics, and Clinical Implementations" @default.
- W3201992381 cites W1917041486 @default.
- W3201992381 cites W1949839429 @default.
- W3201992381 cites W1970950252 @default.
- W3201992381 cites W1976696699 @default.
- W3201992381 cites W1979020320 @default.
- W3201992381 cites W1986970768 @default.
- W3201992381 cites W2009495597 @default.
- W3201992381 cites W2014838985 @default.
- W3201992381 cites W2085343823 @default.
- W3201992381 cites W2106884254 @default.
- W3201992381 cites W2115701610 @default.
- W3201992381 cites W2128625819 @default.
- W3201992381 cites W2130876592 @default.
- W3201992381 cites W2131900397 @default.
- W3201992381 cites W2137571255 @default.
- W3201992381 cites W2138553139 @default.
- W3201992381 cites W2138895317 @default.
- W3201992381 cites W2142858362 @default.
- W3201992381 cites W2148476127 @default.
- W3201992381 cites W2171697262 @default.
- W3201992381 cites W2212653983 @default.
- W3201992381 cites W2297998125 @default.
- W3201992381 cites W2313939671 @default.
- W3201992381 cites W2344227124 @default.
- W3201992381 cites W2508457857 @default.
- W3201992381 cites W2523475678 @default.
- W3201992381 cites W2523655169 @default.
- W3201992381 cites W2563929964 @default.
- W3201992381 cites W2581789787 @default.
- W3201992381 cites W2584483805 @default.
- W3201992381 cites W2589032468 @default.
- W3201992381 cites W2749841670 @default.
- W3201992381 cites W2767236661 @default.
- W3201992381 cites W2773708607 @default.
- W3201992381 cites W2789956930 @default.
- W3201992381 cites W2794990008 @default.
- W3201992381 cites W2809254203 @default.
- W3201992381 cites W2809466833 @default.
- W3201992381 cites W2810349670 @default.
- W3201992381 cites W2884188796 @default.
- W3201992381 cites W2890643838 @default.
- W3201992381 cites W2895926594 @default.
- W3201992381 cites W2899314786 @default.
- W3201992381 cites W2902429977 @default.
- W3201992381 cites W2908581851 @default.
- W3201992381 cites W2913223168 @default.
- W3201992381 cites W2919115771 @default.
- W3201992381 cites W2936378778 @default.
- W3201992381 cites W2937242024 @default.
- W3201992381 cites W2937456081 @default.
- W3201992381 cites W2945263066 @default.
- W3201992381 cites W2952296624 @default.
- W3201992381 cites W2965036321 @default.
- W3201992381 cites W2969119144 @default.
- W3201992381 cites W2980306781 @default.
- W3201992381 cites W2982444987 @default.
- W3201992381 cites W2994431743 @default.
- W3201992381 cites W2998527244 @default.
- W3201992381 cites W3000953045 @default.
- W3201992381 cites W3007407399 @default.
- W3201992381 cites W3092429880 @default.
- W3201992381 cites W3099029995 @default.
- W3201992381 cites W3121040939 @default.
- W3201992381 cites W3122373972 @default.
- W3201992381 cites W74422167 @default.
- W3201992381 doi "https://doi.org/10.1148/rg.2021210105" @default.
- W3201992381 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34597178" @default.
- W3201992381 hasPublicationYear "2021" @default.
- W3201992381 type Work @default.
- W3201992381 sameAs 3201992381 @default.
- W3201992381 citedByCount "31" @default.
- W3201992381 countsByYear W32019923812022 @default.
- W3201992381 countsByYear W32019923812023 @default.
- W3201992381 crossrefType "journal-article" @default.
- W3201992381 hasAuthorship W3201992381A5014094130 @default.
- W3201992381 hasAuthorship W3201992381A5017660722 @default.
- W3201992381 hasAuthorship W3201992381A5024600957 @default.
- W3201992381 hasAuthorship W3201992381A5032369983 @default.
- W3201992381 hasAuthorship W3201992381A5032643459 @default.
- W3201992381 hasAuthorship W3201992381A5043332093 @default.
- W3201992381 hasAuthorship W3201992381A5053968188 @default.
- W3201992381 hasAuthorship W3201992381A5057900219 @default.
- W3201992381 hasAuthorship W3201992381A5078359416 @default.