Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201995624> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3201995624 abstract "Abstract This paper proposes a deep learning-based framework for proxy flow modeling to predict gridded dynamic petroleum reservoir properties (like pressure and saturation) and production rates for wells in a single framework. It approximates the solution of a full physics-based numerical reservoir simulator, but runs much more rapidly, allowing users to generate results for a much wider range of scenarios in a given time than could be done with a full physics simulator. The proxy can be used for reservoir management tasks like history matching, uncertainty quantification, and field development optimization. A deep-learning based methodology for accurate proxy-flow modeling is presented which combines U-Net (a variant of convolutional neural network) to predict gridded dynamic properties and deep neural network (DNN) models to forecast well production rates. First, gridded dynamic properties, such as reservoir pressure and phase saturations, are predicted from static properties like reservoir rock porosity and absolute permeability using a U-Net. Then, the static properties and the dynamic properties predicted by the U-Net are input to a DNN to predict production rates at the well perforations. The inclusion of U-net predicted pressure and saturations improves the quality of the well rate predictions. The proposed methodology is presented with the synthetic Brugge reservoir discretized into grid blocks. The U-Net input consists of three properties: dynamic gridded reservoir properties (such as pressure or fluid saturation) at the current state, static gridded porosity, and static gridded permeability. The U-Net has only one output property, the target gridded property (such as pressure or saturation) at the next time step. Training and testing datasets are generated by running 13 full physics flow simulations and dividing them in a 12:1 ratio. Nine U-Net models are calibrated to predict pressures/saturations, one for each of the nine grid layers present in the Brugge model. These outputs are then concatenated to obtain the complete pressure/saturation model for all nine layers. The constructed U-Net models match the distributions of generated pressures/saturations of the numerical reservoir simulator with a correlation coefficient value of approximately 0.99 and above 95% accuracy. The DNN models approximate well production rates accurately from U-Net predicted pressures and saturations along with static properties like transmissibility and horizontal permeability. For each well and each well perforation, the production rate is predicted with the DNN model. The use of the constructed proxy flow model generates reservoir predictions within a few minutes compared to the hours or days typically taken by a full physics flow simulator. The direct connection that is established between the gridded static and dynamic properties of the reservoir and well production rates using U-Net and DNN models has not been presented previously. Using only a small number of runs for its training, the workflow matches the numerical reservoir simulator results with reduced computational effort. This helps reservoir engineers make informed decisions more quickly, resulting in more efficient reservoir management." @default.
- W3201995624 created "2021-10-11" @default.
- W3201995624 creator A5043935519 @default.
- W3201995624 creator A5051011136 @default.
- W3201995624 creator A5059212307 @default.
- W3201995624 date "2021-10-04" @default.
- W3201995624 modified "2023-10-18" @default.
- W3201995624 title "A Proxy Flow Modelling Workflow to Estimate Gridded Dynamic Properties and Well Production Rates by Deep Learning Algorithms" @default.
- W3201995624 cites W2058488613 @default.
- W3201995624 cites W2806863484 @default.
- W3201995624 cites W2960854905 @default.
- W3201995624 cites W3000670078 @default.
- W3201995624 cites W3016309349 @default.
- W3201995624 doi "https://doi.org/10.2118/205556-ms" @default.
- W3201995624 hasPublicationYear "2021" @default.
- W3201995624 type Work @default.
- W3201995624 sameAs 3201995624 @default.
- W3201995624 citedByCount "1" @default.
- W3201995624 countsByYear W32019956242023 @default.
- W3201995624 crossrefType "proceedings-article" @default.
- W3201995624 hasAuthorship W3201995624A5043935519 @default.
- W3201995624 hasAuthorship W3201995624A5051011136 @default.
- W3201995624 hasAuthorship W3201995624A5059212307 @default.
- W3201995624 hasConcept C108583219 @default.
- W3201995624 hasConcept C113378726 @default.
- W3201995624 hasConcept C11413529 @default.
- W3201995624 hasConcept C119857082 @default.
- W3201995624 hasConcept C120882062 @default.
- W3201995624 hasConcept C127313418 @default.
- W3201995624 hasConcept C134306372 @default.
- W3201995624 hasConcept C14641988 @default.
- W3201995624 hasConcept C154945302 @default.
- W3201995624 hasConcept C177212765 @default.
- W3201995624 hasConcept C187320778 @default.
- W3201995624 hasConcept C2778668878 @default.
- W3201995624 hasConcept C2780148112 @default.
- W3201995624 hasConcept C33923547 @default.
- W3201995624 hasConcept C41008148 @default.
- W3201995624 hasConcept C41625074 @default.
- W3201995624 hasConcept C50644808 @default.
- W3201995624 hasConcept C54355233 @default.
- W3201995624 hasConcept C6648577 @default.
- W3201995624 hasConcept C73000952 @default.
- W3201995624 hasConcept C77088390 @default.
- W3201995624 hasConcept C78762247 @default.
- W3201995624 hasConcept C86803240 @default.
- W3201995624 hasConceptScore W3201995624C108583219 @default.
- W3201995624 hasConceptScore W3201995624C113378726 @default.
- W3201995624 hasConceptScore W3201995624C11413529 @default.
- W3201995624 hasConceptScore W3201995624C119857082 @default.
- W3201995624 hasConceptScore W3201995624C120882062 @default.
- W3201995624 hasConceptScore W3201995624C127313418 @default.
- W3201995624 hasConceptScore W3201995624C134306372 @default.
- W3201995624 hasConceptScore W3201995624C14641988 @default.
- W3201995624 hasConceptScore W3201995624C154945302 @default.
- W3201995624 hasConceptScore W3201995624C177212765 @default.
- W3201995624 hasConceptScore W3201995624C187320778 @default.
- W3201995624 hasConceptScore W3201995624C2778668878 @default.
- W3201995624 hasConceptScore W3201995624C2780148112 @default.
- W3201995624 hasConceptScore W3201995624C33923547 @default.
- W3201995624 hasConceptScore W3201995624C41008148 @default.
- W3201995624 hasConceptScore W3201995624C41625074 @default.
- W3201995624 hasConceptScore W3201995624C50644808 @default.
- W3201995624 hasConceptScore W3201995624C54355233 @default.
- W3201995624 hasConceptScore W3201995624C6648577 @default.
- W3201995624 hasConceptScore W3201995624C73000952 @default.
- W3201995624 hasConceptScore W3201995624C77088390 @default.
- W3201995624 hasConceptScore W3201995624C78762247 @default.
- W3201995624 hasConceptScore W3201995624C86803240 @default.
- W3201995624 hasLocation W32019956241 @default.
- W3201995624 hasOpenAccess W3201995624 @default.
- W3201995624 hasPrimaryLocation W32019956241 @default.
- W3201995624 hasRelatedWork W1965405463 @default.
- W3201995624 hasRelatedWork W2018492195 @default.
- W3201995624 hasRelatedWork W2066210005 @default.
- W3201995624 hasRelatedWork W2067001820 @default.
- W3201995624 hasRelatedWork W2117849641 @default.
- W3201995624 hasRelatedWork W2810792068 @default.
- W3201995624 hasRelatedWork W2974118661 @default.
- W3201995624 hasRelatedWork W3126837995 @default.
- W3201995624 hasRelatedWork W4245282654 @default.
- W3201995624 hasRelatedWork W2204207983 @default.
- W3201995624 isParatext "false" @default.
- W3201995624 isRetracted "false" @default.
- W3201995624 magId "3201995624" @default.
- W3201995624 workType "article" @default.