Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202001049> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W3202001049 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper R> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=application/x-tex>R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the face ring of a simplicial complex of dimension <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d minus 1> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>d-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper R left-parenthesis German n right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>R</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>n</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{mathcal R}({mathfrak {n}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the Rees algebra of the maximal homogeneous ideal <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German n> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>n</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>{mathfrak {n}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper R period> <mml:semantics> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>R.</mml:annotation> </mml:semantics> </mml:math> </inline-formula> We show that the generalized Hilbert-Kunz function <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H upper K left-parenthesis s right-parenthesis equals script l left-parenthesis script upper R left-parenthesis German n right-parenthesis slash left-parenthesis German n comma German n t right-parenthesis Superscript left-bracket s right-bracket Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mi>K</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>R</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>n</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>n</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>,</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>n</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>t</mml:mi> <mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>[</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy=false>]</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>HK(s)=ell ({mathcal {R}}({mathfrak {n}})/({mathfrak {n}}, {mathfrak {n}} t)^{[s]})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is given by a polynomial for all large <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=s period> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>s.</mml:annotation> </mml:semantics> </mml:math> </inline-formula> We calculate it in many examples and also provide a Macaulay2 code for computing <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H upper K left-parenthesis s right-parenthesis period> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mi>K</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>HK(s).</mml:annotation> </mml:semantics> </mml:math> </inline-formula>" @default.
- W3202001049 created "2021-10-11" @default.
- W3202001049 creator A5019045928 @default.
- W3202001049 creator A5047782985 @default.
- W3202001049 creator A5080657354 @default.
- W3202001049 date "2021-01-01" @default.
- W3202001049 modified "2023-09-25" @default.
- W3202001049 title "Generalized Hilbert-Kunz function of the Rees algebra of the face ring of a simplicial complex" @default.
- W3202001049 cites W1513569973 @default.
- W3202001049 cites W2006088480 @default.
- W3202001049 cites W2014734763 @default.
- W3202001049 cites W2058801276 @default.
- W3202001049 cites W2071068474 @default.
- W3202001049 cites W2809440569 @default.
- W3202001049 cites W2914659449 @default.
- W3202001049 cites W3133873021 @default.
- W3202001049 cites W4247133720 @default.
- W3202001049 doi "https://doi.org/10.1090/conm/773/15543" @default.
- W3202001049 hasPublicationYear "2021" @default.
- W3202001049 type Work @default.
- W3202001049 sameAs 3202001049 @default.
- W3202001049 citedByCount "0" @default.
- W3202001049 crossrefType "other" @default.
- W3202001049 hasAuthorship W3202001049A5019045928 @default.
- W3202001049 hasAuthorship W3202001049A5047782985 @default.
- W3202001049 hasAuthorship W3202001049A5080657354 @default.
- W3202001049 hasBestOaLocation W32020010492 @default.
- W3202001049 hasConcept C11413529 @default.
- W3202001049 hasConcept C154945302 @default.
- W3202001049 hasConcept C33923547 @default.
- W3202001049 hasConcept C41008148 @default.
- W3202001049 hasConceptScore W3202001049C11413529 @default.
- W3202001049 hasConceptScore W3202001049C154945302 @default.
- W3202001049 hasConceptScore W3202001049C33923547 @default.
- W3202001049 hasConceptScore W3202001049C41008148 @default.
- W3202001049 hasLocation W32020010491 @default.
- W3202001049 hasLocation W32020010492 @default.
- W3202001049 hasOpenAccess W3202001049 @default.
- W3202001049 hasPrimaryLocation W32020010491 @default.
- W3202001049 hasRelatedWork W15031022 @default.
- W3202001049 hasRelatedWork W17291512 @default.
- W3202001049 hasRelatedWork W22319829 @default.
- W3202001049 hasRelatedWork W34093458 @default.
- W3202001049 hasRelatedWork W34834191 @default.
- W3202001049 hasRelatedWork W37172077 @default.
- W3202001049 hasRelatedWork W3997614 @default.
- W3202001049 hasRelatedWork W48598953 @default.
- W3202001049 hasRelatedWork W50687045 @default.
- W3202001049 hasRelatedWork W56952628 @default.
- W3202001049 isParatext "false" @default.
- W3202001049 isRetracted "false" @default.
- W3202001049 magId "3202001049" @default.
- W3202001049 workType "other" @default.