Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202008685> ?p ?o ?g. }
- W3202008685 abstract "The absence of 'shovel-ready' anti-coronavirus drugs during vaccine development has exceedingly worsened the SARS-CoV-2 pandemic. Furthermore, new vaccine-resistant variants and coronavirus outbreaks may occur in the near future, and we must be ready to face this possibility. However, efficient antiviral drugs are still lacking to this day, due to our poor understanding of the mode of incorporation and mechanism of action of nucleotides analogs that target the coronavirus polymerase to impair its essential activity. Here, we characterize the impact of remdesivir (RDV, the only FDA-approved anti-coronavirus drug) and other nucleotide analogs (NAs) on RNA synthesis by the coronavirus polymerase using a high-throughput, single-molecule, magnetic-tweezers platform. We reveal that the location of the modification in the ribose or in the base dictates the catalytic pathway(s) used for its incorporation. We show that RDV incorporation does not terminate viral RNA synthesis, but leads the polymerase into backtrack as far as 30 nt, which may appear as termination in traditional ensemble assays. SARS-CoV-2 is able to evade the endogenously synthesized product of the viperin antiviral protein, ddhCTP, though the polymerase incorporates this NA well. This experimental paradigm is essential to the discovery and development of therapeutics targeting viral polymerases.To multiply and spread from cell to cell, the virus responsible for COVID-19 (also known as SARS-CoV-2) must first replicate its genetic information. This process involves a ‘polymerase’ protein complex making a faithful copy by assembling a precise sequence of building blocks, or nucleotides. The only drug approved against SARS-CoV-2 by the US Food and Drug Administration (FDA), remdesivir, consists of a nucleotide analog, a molecule whose structure is similar to the actual building blocks needed for replication. If the polymerase recognizes and integrates these analogs into the growing genetic sequence, the replication mechanism is disrupted, and the virus cannot multiply. Most approaches to study this process seem to indicate that remdesivir works by stopping the polymerase and terminating replication altogether. Yet, exactly how remdesivir and other analogs impair the synthesis of new copies of the virus remains uncertain. To explore this question, Seifert, Bera et al. employed an approach called magnetic tweezers which uses a magnetic field to manipulate micro-particles with great precision. Unlike other methods, this technique allows analogs to be integrated under conditions similar to those found in cells, and to be examined at the level of a single molecule. The results show that contrary to previous assumptions, remdesivir does not terminate replication; instead, it causes the polymerase to pause and backtrack (which may appear as termination in other techniques). The same approach was then applied to other nucleotide analogs, some of which were also found to target the SARS-CoV-2 polymerase. However, these analogs are incorporated differently to remdesivir and with less efficiency. They also obstruct the polymerase in distinct ways. Taken together, the results by Seifert, Bera et al. suggest that magnetic tweezers can be a powerful approach to reveal how analogs interfere with replication. This information could be used to improve currently available analogs as well as develop new antiviral drugs that are more effective against SARS-CoV-2. This knowledge will be key at a time when treatments against COVID-19 are still lacking, and may be needed to protect against new variants and future outbreaks." @default.
- W3202008685 created "2021-10-11" @default.
- W3202008685 creator A5006013523 @default.
- W3202008685 creator A5010786669 @default.
- W3202008685 creator A5012234034 @default.
- W3202008685 creator A5012741135 @default.
- W3202008685 creator A5021526153 @default.
- W3202008685 creator A5024730915 @default.
- W3202008685 creator A5037188019 @default.
- W3202008685 creator A5038176175 @default.
- W3202008685 creator A5042298609 @default.
- W3202008685 creator A5049428453 @default.
- W3202008685 creator A5055149042 @default.
- W3202008685 creator A5057630635 @default.
- W3202008685 creator A5060439764 @default.
- W3202008685 creator A5063531107 @default.
- W3202008685 creator A5067402776 @default.
- W3202008685 creator A5071332499 @default.
- W3202008685 creator A5072129317 @default.
- W3202008685 creator A5076149634 @default.
- W3202008685 creator A5076405444 @default.
- W3202008685 date "2021-10-07" @default.
- W3202008685 modified "2023-10-13" @default.
- W3202008685 title "Inhibition of SARS-CoV-2 polymerase by nucleotide analogs from a single-molecule perspective" @default.
- W3202008685 cites W1882763707 @default.
- W3202008685 cites W1887471033 @default.
- W3202008685 cites W1963623224 @default.
- W3202008685 cites W1977159900 @default.
- W3202008685 cites W1984259198 @default.
- W3202008685 cites W1994542643 @default.
- W3202008685 cites W2023016206 @default.
- W3202008685 cites W2045074917 @default.
- W3202008685 cites W2054553813 @default.
- W3202008685 cites W2078491583 @default.
- W3202008685 cites W2126428749 @default.
- W3202008685 cites W2140943911 @default.
- W3202008685 cites W2154834417 @default.
- W3202008685 cites W2155952708 @default.
- W3202008685 cites W2581273760 @default.
- W3202008685 cites W2765684836 @default.
- W3202008685 cites W2777914188 @default.
- W3202008685 cites W2793022939 @default.
- W3202008685 cites W2809660639 @default.
- W3202008685 cites W2897220482 @default.
- W3202008685 cites W2914796231 @default.
- W3202008685 cites W2945440984 @default.
- W3202008685 cites W2963895440 @default.
- W3202008685 cites W2977699185 @default.
- W3202008685 cites W3007969569 @default.
- W3202008685 cites W3015429854 @default.
- W3202008685 cites W3015554176 @default.
- W3202008685 cites W3015570961 @default.
- W3202008685 cites W3015751519 @default.
- W3202008685 cites W3025511956 @default.
- W3202008685 cites W3025979430 @default.
- W3202008685 cites W3027231799 @default.
- W3202008685 cites W3031020582 @default.
- W3202008685 cites W3036893309 @default.
- W3202008685 cites W3041968020 @default.
- W3202008685 cites W3045003495 @default.
- W3202008685 cites W3045645692 @default.
- W3202008685 cites W3046843764 @default.
- W3202008685 cites W3086108939 @default.
- W3202008685 cites W3087744389 @default.
- W3202008685 cites W3087747244 @default.
- W3202008685 cites W3093120161 @default.
- W3202008685 cites W3095556560 @default.
- W3202008685 cites W3110011545 @default.
- W3202008685 cites W3119203274 @default.
- W3202008685 cites W3124465081 @default.
- W3202008685 cites W3154608301 @default.
- W3202008685 cites W3186956315 @default.
- W3202008685 cites W3194028163 @default.
- W3202008685 doi "https://doi.org/10.7554/elife.70968" @default.
- W3202008685 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8497053" @default.
- W3202008685 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34617885" @default.
- W3202008685 hasPublicationYear "2021" @default.
- W3202008685 type Work @default.
- W3202008685 sameAs 3202008685 @default.
- W3202008685 citedByCount "45" @default.
- W3202008685 countsByYear W32020086852021 @default.
- W3202008685 countsByYear W32020086852022 @default.
- W3202008685 countsByYear W32020086852023 @default.
- W3202008685 crossrefType "journal-article" @default.
- W3202008685 hasAuthorship W3202008685A5006013523 @default.
- W3202008685 hasAuthorship W3202008685A5010786669 @default.
- W3202008685 hasAuthorship W3202008685A5012234034 @default.
- W3202008685 hasAuthorship W3202008685A5012741135 @default.
- W3202008685 hasAuthorship W3202008685A5021526153 @default.
- W3202008685 hasAuthorship W3202008685A5024730915 @default.
- W3202008685 hasAuthorship W3202008685A5037188019 @default.
- W3202008685 hasAuthorship W3202008685A5038176175 @default.
- W3202008685 hasAuthorship W3202008685A5042298609 @default.
- W3202008685 hasAuthorship W3202008685A5049428453 @default.
- W3202008685 hasAuthorship W3202008685A5055149042 @default.
- W3202008685 hasAuthorship W3202008685A5057630635 @default.
- W3202008685 hasAuthorship W3202008685A5060439764 @default.
- W3202008685 hasAuthorship W3202008685A5063531107 @default.
- W3202008685 hasAuthorship W3202008685A5067402776 @default.
- W3202008685 hasAuthorship W3202008685A5071332499 @default.