Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202021102> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W3202021102 abstract "We explore aspects of pluripotential theory generalized to the convex body associated case. We focus on theoretical justifications of numerical approximations to important objects and quantities. We implement some of these constructions using the Python programming language. Pluripotential theory is a branch of the study of several complex variables expanding univariate potential theory. Many of the foundational proofs rely on the precise lexicographical ordering of the monomials and the standard notion of degree. However, it has recently been shown that different orderings have value in polynomial approximation [Tre17]. This dissertation takes part in the effort to generalize pluripotential theory to the case of these novel orderings and new notions of degree, which are associated with a given convex body. We begin with a motivational section on why pluripotential theory associated with a convex body is a valuable course of study and provide the necessary background in pluripotential theory, convex body associated polynomials, and associated orderings. We prove a theorem dividing convex bodies into classes based on whether or not an “additive and nested” ordering can be constructed. Further, we showcase a counterexample with a regularization issue in the convex body case. We then discuss finite point sequences associated with a given compact set. After providing the classic definitions, we generalize numerical algorithms to generate points associated with the polynomials given by a convex body as well as showcasing a numerical implementation of these algorithms in Python 3 [VRD09]. We provide a chapter generalizing numerical approximation algorithms to the convex body associated case: these algorithms allow us to approximate several important pluripotential theoretic constructions. We discuss a related problem from optimal design theory: proving the global convergence of a measure-theoretic Silvey–Titterington–Torsney algorithm. We have implemented the algorithm in Python for some cases, and much progress has been made on the proof of convergence. Lastly, an appendix chapter is included showing that the measure-theoretic framing of the optimal design problem is valid. A second appendix chapter provides the full implementation of the algorithms to construct finite point sequences and arrays." @default.
- W3202021102 created "2021-10-11" @default.
- W3202021102 creator A5033175966 @default.
- W3202021102 date "2020-01-01" @default.
- W3202021102 modified "2023-09-24" @default.
- W3202021102 title "PLURIPOTENTIAL THEORY ASSOCIATED WITH CONVEX BODIES AND RELATED NUMERICSPLURIPOTENTIAL THEORY ASSOCIATED WITH CONVEX BODIES AND RELATED NUMERICS" @default.
- W3202021102 hasPublicationYear "2020" @default.
- W3202021102 type Work @default.
- W3202021102 sameAs 3202021102 @default.
- W3202021102 citedByCount "0" @default.
- W3202021102 crossrefType "journal-article" @default.
- W3202021102 hasAuthorship W3202021102A5033175966 @default.
- W3202021102 hasConcept C111110010 @default.
- W3202021102 hasConcept C112680207 @default.
- W3202021102 hasConcept C118615104 @default.
- W3202021102 hasConcept C12108790 @default.
- W3202021102 hasConcept C134912446 @default.
- W3202021102 hasConcept C157972887 @default.
- W3202021102 hasConcept C2524010 @default.
- W3202021102 hasConcept C33923547 @default.
- W3202021102 hasConcept C49870271 @default.
- W3202021102 hasConceptScore W3202021102C111110010 @default.
- W3202021102 hasConceptScore W3202021102C112680207 @default.
- W3202021102 hasConceptScore W3202021102C118615104 @default.
- W3202021102 hasConceptScore W3202021102C12108790 @default.
- W3202021102 hasConceptScore W3202021102C134912446 @default.
- W3202021102 hasConceptScore W3202021102C157972887 @default.
- W3202021102 hasConceptScore W3202021102C2524010 @default.
- W3202021102 hasConceptScore W3202021102C33923547 @default.
- W3202021102 hasConceptScore W3202021102C49870271 @default.
- W3202021102 hasLocation W32020211021 @default.
- W3202021102 hasOpenAccess W3202021102 @default.
- W3202021102 hasPrimaryLocation W32020211021 @default.
- W3202021102 hasRelatedWork W14622911 @default.
- W3202021102 hasRelatedWork W1556257241 @default.
- W3202021102 hasRelatedWork W1615606289 @default.
- W3202021102 hasRelatedWork W1653490780 @default.
- W3202021102 hasRelatedWork W191520274 @default.
- W3202021102 hasRelatedWork W1996344378 @default.
- W3202021102 hasRelatedWork W2214069397 @default.
- W3202021102 hasRelatedWork W2229004606 @default.
- W3202021102 hasRelatedWork W2478987598 @default.
- W3202021102 hasRelatedWork W2799402589 @default.
- W3202021102 hasRelatedWork W2943157251 @default.
- W3202021102 hasRelatedWork W2951153919 @default.
- W3202021102 hasRelatedWork W296421227 @default.
- W3202021102 hasRelatedWork W2971476396 @default.
- W3202021102 hasRelatedWork W3011585311 @default.
- W3202021102 hasRelatedWork W3133051703 @default.
- W3202021102 hasRelatedWork W3144660993 @default.
- W3202021102 hasRelatedWork W4696618 @default.
- W3202021102 hasRelatedWork W56322521 @default.
- W3202021102 isParatext "false" @default.
- W3202021102 isRetracted "false" @default.
- W3202021102 magId "3202021102" @default.
- W3202021102 workType "article" @default.