Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202021172> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3202021172 abstract "We propose a nonparametric online-learning framework to conduct early-stage dose-finding clinical trials with simultaneous consideration of efficacy and toxicity. It has two major benefits: efficient use of patient responses and immunity to model misspecifications. First, unlike most Phase I trials, which only keep track of the toxicity, our framework makes efficient use of patient responses and infers the efficacy of each dose at the same time. Second, our framework utilizes application-specific structures of the dose-efficacy and dose-toxicity curves without imposing any parametric forms. Because of the discontinuity arising from the binary response (the dose is safe or not), the standard approaches in continuum-armed bandits do not apply. We then propose two algorithms, which are easy to understand, implement, and analyze their regret. The first one follows dose-escalation principles and analyzes the efficacy and toxicity simultaneously, which makes it appealing when very little information about the dose-toxicity profile is available. The second one, which is asymptotically optimal up to a logarithmic factor, uses bisection search to identify a safe dose range and then applies upper confidence bound algorithms within the safe range to identify efficacious doses. We test our proposed algorithms with three benchmarks commonly used in practice on synthetic and real datasets, and the results show that they significantly outperform the benchmarks" @default.
- W3202021172 created "2021-10-11" @default.
- W3202021172 creator A5022344291 @default.
- W3202021172 creator A5077201351 @default.
- W3202021172 date "2020-01-01" @default.
- W3202021172 modified "2023-09-24" @default.
- W3202021172 title "Adaptive Seamless Dose-Finding Trials" @default.
- W3202021172 cites W1521084402 @default.
- W3202021172 cites W157796586 @default.
- W3202021172 cites W1971034820 @default.
- W3202021172 cites W1971685703 @default.
- W3202021172 cites W1973002971 @default.
- W3202021172 cites W1986188871 @default.
- W3202021172 cites W1997478431 @default.
- W3202021172 cites W2000811885 @default.
- W3202021172 cites W2025608337 @default.
- W3202021172 cites W2034009330 @default.
- W3202021172 cites W2045588083 @default.
- W3202021172 cites W2050950840 @default.
- W3202021172 cites W2076108528 @default.
- W3202021172 cites W2095602422 @default.
- W3202021172 cites W2101596207 @default.
- W3202021172 cites W2113464761 @default.
- W3202021172 cites W2133954805 @default.
- W3202021172 cites W2143242804 @default.
- W3202021172 cites W2149344761 @default.
- W3202021172 cites W2160860428 @default.
- W3202021172 cites W2167220017 @default.
- W3202021172 cites W2174751983 @default.
- W3202021172 cites W2183890563 @default.
- W3202021172 cites W2302343385 @default.
- W3202021172 cites W2322444413 @default.
- W3202021172 cites W2771013664 @default.
- W3202021172 cites W2895683742 @default.
- W3202021172 cites W2914811027 @default.
- W3202021172 cites W2953407615 @default.
- W3202021172 cites W2954318342 @default.
- W3202021172 cites W3100895096 @default.
- W3202021172 cites W3122984617 @default.
- W3202021172 cites W3124121179 @default.
- W3202021172 cites W3132995834 @default.
- W3202021172 cites W4241589022 @default.
- W3202021172 doi "https://doi.org/10.2139/ssrn.3636294" @default.
- W3202021172 hasPublicationYear "2020" @default.
- W3202021172 type Work @default.
- W3202021172 sameAs 3202021172 @default.
- W3202021172 citedByCount "2" @default.
- W3202021172 countsByYear W32020211722021 @default.
- W3202021172 crossrefType "journal-article" @default.
- W3202021172 hasAuthorship W3202021172A5022344291 @default.
- W3202021172 hasAuthorship W3202021172A5077201351 @default.
- W3202021172 hasConcept C102366305 @default.
- W3202021172 hasConcept C105795698 @default.
- W3202021172 hasConcept C119857082 @default.
- W3202021172 hasConcept C134306372 @default.
- W3202021172 hasConcept C159985019 @default.
- W3202021172 hasConcept C192562407 @default.
- W3202021172 hasConcept C204323151 @default.
- W3202021172 hasConcept C33923547 @default.
- W3202021172 hasConcept C39927690 @default.
- W3202021172 hasConcept C41008148 @default.
- W3202021172 hasConcept C50817715 @default.
- W3202021172 hasConceptScore W3202021172C102366305 @default.
- W3202021172 hasConceptScore W3202021172C105795698 @default.
- W3202021172 hasConceptScore W3202021172C119857082 @default.
- W3202021172 hasConceptScore W3202021172C134306372 @default.
- W3202021172 hasConceptScore W3202021172C159985019 @default.
- W3202021172 hasConceptScore W3202021172C192562407 @default.
- W3202021172 hasConceptScore W3202021172C204323151 @default.
- W3202021172 hasConceptScore W3202021172C33923547 @default.
- W3202021172 hasConceptScore W3202021172C39927690 @default.
- W3202021172 hasConceptScore W3202021172C41008148 @default.
- W3202021172 hasConceptScore W3202021172C50817715 @default.
- W3202021172 hasLocation W32020211721 @default.
- W3202021172 hasOpenAccess W3202021172 @default.
- W3202021172 hasPrimaryLocation W32020211721 @default.
- W3202021172 hasRelatedWork W10397790 @default.
- W3202021172 hasRelatedWork W12770410 @default.
- W3202021172 hasRelatedWork W1830519 @default.
- W3202021172 hasRelatedWork W2446625 @default.
- W3202021172 hasRelatedWork W4703758 @default.
- W3202021172 hasRelatedWork W8607455 @default.
- W3202021172 hasRelatedWork W8754775 @default.
- W3202021172 hasRelatedWork W9422450 @default.
- W3202021172 hasRelatedWork W9932698 @default.
- W3202021172 hasRelatedWork W9970749 @default.
- W3202021172 isParatext "false" @default.
- W3202021172 isRetracted "false" @default.
- W3202021172 magId "3202021172" @default.
- W3202021172 workType "article" @default.