Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202022212> ?p ?o ?g. }
- W3202022212 abstract "In this paper, a nonparametric kernel prediction algorithm in machine learning is applied to predict CO 2 emissions. A literature review has been conducted so that proper independent variables can be identified. Traditional parametric modeling approaches and the Gaussian Process Regression (GPR) algorithms were introduced, and their prediction performance was summarized. The reliability and efficiency of the proposed algorithms were then demonstrated through the comparison of the actual and the predicted results. The results showed that the GPR method can give the most accurate predictions on CO 2 emissions." @default.
- W3202022212 created "2021-10-11" @default.
- W3202022212 creator A5003464940 @default.
- W3202022212 creator A5027311730 @default.
- W3202022212 creator A5060213113 @default.
- W3202022212 creator A5067575816 @default.
- W3202022212 date "2021-09-24" @default.
- W3202022212 modified "2023-10-15" @default.
- W3202022212 title "Can Machine Learning be Applied to Carbon Emissions Analysis: An Application to the CO2 Emissions Analysis Using Gaussian Process Regression" @default.
- W3202022212 cites W1525434401 @default.
- W3202022212 cites W1578370213 @default.
- W3202022212 cites W1657213141 @default.
- W3202022212 cites W1967355926 @default.
- W3202022212 cites W1987019268 @default.
- W3202022212 cites W2031729134 @default.
- W3202022212 cites W2052139061 @default.
- W3202022212 cites W2063553902 @default.
- W3202022212 cites W2070631858 @default.
- W3202022212 cites W2084609244 @default.
- W3202022212 cites W2087598816 @default.
- W3202022212 cites W2115870554 @default.
- W3202022212 cites W2529484566 @default.
- W3202022212 cites W2743116581 @default.
- W3202022212 cites W2780766019 @default.
- W3202022212 cites W2883615070 @default.
- W3202022212 cites W2940636459 @default.
- W3202022212 cites W2986668512 @default.
- W3202022212 cites W3000099478 @default.
- W3202022212 cites W3000144517 @default.
- W3202022212 cites W3009904776 @default.
- W3202022212 cites W3041442293 @default.
- W3202022212 cites W3046456277 @default.
- W3202022212 cites W3089454703 @default.
- W3202022212 cites W3092040958 @default.
- W3202022212 cites W3101243326 @default.
- W3202022212 cites W3131686906 @default.
- W3202022212 cites W3137079044 @default.
- W3202022212 doi "https://doi.org/10.3389/fenrg.2021.756311" @default.
- W3202022212 hasPublicationYear "2021" @default.
- W3202022212 type Work @default.
- W3202022212 sameAs 3202022212 @default.
- W3202022212 citedByCount "9" @default.
- W3202022212 countsByYear W32020222122023 @default.
- W3202022212 crossrefType "journal-article" @default.
- W3202022212 hasAuthorship W3202022212A5003464940 @default.
- W3202022212 hasAuthorship W3202022212A5027311730 @default.
- W3202022212 hasAuthorship W3202022212A5060213113 @default.
- W3202022212 hasAuthorship W3202022212A5067575816 @default.
- W3202022212 hasBestOaLocation W32020222121 @default.
- W3202022212 hasConcept C102366305 @default.
- W3202022212 hasConcept C105795698 @default.
- W3202022212 hasConcept C111919701 @default.
- W3202022212 hasConcept C11413529 @default.
- W3202022212 hasConcept C114614502 @default.
- W3202022212 hasConcept C117251300 @default.
- W3202022212 hasConcept C119857082 @default.
- W3202022212 hasConcept C121332964 @default.
- W3202022212 hasConcept C147597530 @default.
- W3202022212 hasConcept C152877465 @default.
- W3202022212 hasConcept C154945302 @default.
- W3202022212 hasConcept C163258240 @default.
- W3202022212 hasConcept C163716315 @default.
- W3202022212 hasConcept C185592680 @default.
- W3202022212 hasConcept C33923547 @default.
- W3202022212 hasConcept C41008148 @default.
- W3202022212 hasConcept C43214815 @default.
- W3202022212 hasConcept C554190296 @default.
- W3202022212 hasConcept C61326573 @default.
- W3202022212 hasConcept C62520636 @default.
- W3202022212 hasConcept C71813955 @default.
- W3202022212 hasConcept C74193536 @default.
- W3202022212 hasConcept C76155785 @default.
- W3202022212 hasConcept C81692654 @default.
- W3202022212 hasConcept C83546350 @default.
- W3202022212 hasConcept C98045186 @default.
- W3202022212 hasConceptScore W3202022212C102366305 @default.
- W3202022212 hasConceptScore W3202022212C105795698 @default.
- W3202022212 hasConceptScore W3202022212C111919701 @default.
- W3202022212 hasConceptScore W3202022212C11413529 @default.
- W3202022212 hasConceptScore W3202022212C114614502 @default.
- W3202022212 hasConceptScore W3202022212C117251300 @default.
- W3202022212 hasConceptScore W3202022212C119857082 @default.
- W3202022212 hasConceptScore W3202022212C121332964 @default.
- W3202022212 hasConceptScore W3202022212C147597530 @default.
- W3202022212 hasConceptScore W3202022212C152877465 @default.
- W3202022212 hasConceptScore W3202022212C154945302 @default.
- W3202022212 hasConceptScore W3202022212C163258240 @default.
- W3202022212 hasConceptScore W3202022212C163716315 @default.
- W3202022212 hasConceptScore W3202022212C185592680 @default.
- W3202022212 hasConceptScore W3202022212C33923547 @default.
- W3202022212 hasConceptScore W3202022212C41008148 @default.
- W3202022212 hasConceptScore W3202022212C43214815 @default.
- W3202022212 hasConceptScore W3202022212C554190296 @default.
- W3202022212 hasConceptScore W3202022212C61326573 @default.
- W3202022212 hasConceptScore W3202022212C62520636 @default.
- W3202022212 hasConceptScore W3202022212C71813955 @default.
- W3202022212 hasConceptScore W3202022212C74193536 @default.
- W3202022212 hasConceptScore W3202022212C76155785 @default.
- W3202022212 hasConceptScore W3202022212C81692654 @default.
- W3202022212 hasConceptScore W3202022212C83546350 @default.