Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202022299> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3202022299 endingPage "3967" @default.
- W3202022299 startingPage "3955" @default.
- W3202022299 abstract "The overall healthcare system has been prioritized within development top lists worldwide. Since many national populations are aging, combined with the availability of sophisticated medical treatments, healthcare expenditures are rapidly growing. Blood banks are a major component of any healthcare system, which store and provide the blood products needed for organ transplants, emergency medical treatments, and routine surgeries. Timely delivery of blood products is vital, especially in emergency settings. Hence, blood delivery process parameters such as safety and speed have received attention in the literature, as well as other parameters such as delivery cost. In this paper, delivery time and cost are modeled mathematically and marked as objective functions requiring simultaneous optimization. A solution is proposed based on Deep Reinforcement Learning (DRL) to address the formulated delivery functions as Multi-objective Optimization Problems (MOPs). The basic concept of the solution is to decompose the MOP into a scalar optimization sub-problems set, where each one of these sub-problems is modeled as a separate Neural Network (NN). The overall model parameters for each sub-problem are optimized based on a neighborhood parameter transfer and DRL training algorithm. The optimization step for the sub-problems is undertaken collaboratively to optimize the overall model. Pareto-optimal solutions can be directly obtained using the trained NN. Specifically, the multi-objective blood bank delivery problem is addressed in this research. One major technical advantage of this approach is that once the trained model is available, it can be scaled without the need for model retraining. The scoring can be obtained directly using a straightforward computation of the NN layers in a limited time. The proposed technique provides a set of technical strength points such as the ability to generalize and solve rapidly compared to other multi-objective optimization methods. The model was trained and tested on 5 major hospitals in Saudi Arabia’s Riyadh region, and the simulation results indicated that time and cost decreased by 35% and 30%, respectively. In particular, the proposed model outperformed other state-of-the-art MOP solutions such as Genetic Algorithms and Simulated Annealing." @default.
- W3202022299 created "2021-10-11" @default.
- W3202022299 creator A5072018895 @default.
- W3202022299 creator A5081547386 @default.
- W3202022299 creator A5085928083 @default.
- W3202022299 date "2022-01-01" @default.
- W3202022299 modified "2023-09-25" @default.
- W3202022299 title "Deep Reinforcement Learning Model for Blood Bank Vehicle Routing Multi-Objective Optimization" @default.
- W3202022299 cites W142294586 @default.
- W3202022299 cites W1803713235 @default.
- W3202022299 cites W1989974478 @default.
- W3202022299 cites W2002804923 @default.
- W3202022299 cites W2027332297 @default.
- W3202022299 cites W2052018616 @default.
- W3202022299 cites W2073478661 @default.
- W3202022299 cites W2083298959 @default.
- W3202022299 cites W2094513248 @default.
- W3202022299 cites W2152258334 @default.
- W3202022299 cites W2162675932 @default.
- W3202022299 cites W2168127659 @default.
- W3202022299 cites W2329757568 @default.
- W3202022299 cites W2521918431 @default.
- W3202022299 cites W2783873619 @default.
- W3202022299 cites W2791426872 @default.
- W3202022299 cites W2792443478 @default.
- W3202022299 cites W29472711 @default.
- W3202022299 cites W2969343193 @default.
- W3202022299 cites W2982316857 @default.
- W3202022299 doi "https://doi.org/10.32604/cmc.2022.019448" @default.
- W3202022299 hasPublicationYear "2022" @default.
- W3202022299 type Work @default.
- W3202022299 sameAs 3202022299 @default.
- W3202022299 citedByCount "2" @default.
- W3202022299 countsByYear W32020222992022 @default.
- W3202022299 crossrefType "journal-article" @default.
- W3202022299 hasAuthorship W3202022299A5072018895 @default.
- W3202022299 hasAuthorship W3202022299A5081547386 @default.
- W3202022299 hasAuthorship W3202022299A5085928083 @default.
- W3202022299 hasBestOaLocation W32020222991 @default.
- W3202022299 hasConcept C111919701 @default.
- W3202022299 hasConcept C11413529 @default.
- W3202022299 hasConcept C119857082 @default.
- W3202022299 hasConcept C126255220 @default.
- W3202022299 hasConcept C137836250 @default.
- W3202022299 hasConcept C144133560 @default.
- W3202022299 hasConcept C154945302 @default.
- W3202022299 hasConcept C155202549 @default.
- W3202022299 hasConcept C2778712577 @default.
- W3202022299 hasConcept C33923547 @default.
- W3202022299 hasConcept C41008148 @default.
- W3202022299 hasConcept C68781425 @default.
- W3202022299 hasConcept C97541855 @default.
- W3202022299 hasConcept C98045186 @default.
- W3202022299 hasConceptScore W3202022299C111919701 @default.
- W3202022299 hasConceptScore W3202022299C11413529 @default.
- W3202022299 hasConceptScore W3202022299C119857082 @default.
- W3202022299 hasConceptScore W3202022299C126255220 @default.
- W3202022299 hasConceptScore W3202022299C137836250 @default.
- W3202022299 hasConceptScore W3202022299C144133560 @default.
- W3202022299 hasConceptScore W3202022299C154945302 @default.
- W3202022299 hasConceptScore W3202022299C155202549 @default.
- W3202022299 hasConceptScore W3202022299C2778712577 @default.
- W3202022299 hasConceptScore W3202022299C33923547 @default.
- W3202022299 hasConceptScore W3202022299C41008148 @default.
- W3202022299 hasConceptScore W3202022299C68781425 @default.
- W3202022299 hasConceptScore W3202022299C97541855 @default.
- W3202022299 hasConceptScore W3202022299C98045186 @default.
- W3202022299 hasIssue "2" @default.
- W3202022299 hasLocation W32020222991 @default.
- W3202022299 hasOpenAccess W3202022299 @default.
- W3202022299 hasPrimaryLocation W32020222991 @default.
- W3202022299 hasRelatedWork W1994436307 @default.
- W3202022299 hasRelatedWork W1999564523 @default.
- W3202022299 hasRelatedWork W2029959045 @default.
- W3202022299 hasRelatedWork W2055791821 @default.
- W3202022299 hasRelatedWork W2142844925 @default.
- W3202022299 hasRelatedWork W2329573458 @default.
- W3202022299 hasRelatedWork W2611723089 @default.
- W3202022299 hasRelatedWork W4240964608 @default.
- W3202022299 hasRelatedWork W4318426920 @default.
- W3202022299 hasRelatedWork W2131100094 @default.
- W3202022299 hasVolume "70" @default.
- W3202022299 isParatext "false" @default.
- W3202022299 isRetracted "false" @default.
- W3202022299 magId "3202022299" @default.
- W3202022299 workType "article" @default.