Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202022441> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3202022441 abstract "In the era of big data, large-scale data can be very effective in improving model performance. However, in the real world, high-quality data is usually difficult to acquire due to privacy or cost. Especially when it comes to credit card fraud, the fraud samples are quite rare. Detecting card fraud with few samples is a meaningful task. Graph neural network (GNN) is a good way to deal with few samples because an advantage of GNN is that information can be disseminated through connections between nodes. However, the data structure of credit cards cannot be applied by the GNN-based method directly. In this paper, we proposed a GNN-based few-shot learning method which can detect credit card fraud with few samples effectively. We constructed a learnable parametric adjacency matrix method relying on the similarity of features to pass messages and utilized the GCN layer to extract node features. We compared our method with classical machine learning algorithms and other graph neural networks on the real-world data set. Our experimental results show that our proposed model can perform better extremely with fewer training samples than baselines." @default.
- W3202022441 created "2021-10-11" @default.
- W3202022441 creator A5012404438 @default.
- W3202022441 creator A5027019343 @default.
- W3202022441 creator A5038521974 @default.
- W3202022441 creator A5041400752 @default.
- W3202022441 creator A5045996504 @default.
- W3202022441 creator A5054814122 @default.
- W3202022441 date "2021-07-15" @default.
- W3202022441 modified "2023-09-27" @default.
- W3202022441 title "A GNN-based Few-shot learning model on the Credit Card Fraud detection" @default.
- W3202022441 cites W1576520375 @default.
- W3202022441 doi "https://doi.org/10.1109/dtpi52967.2021.9540093" @default.
- W3202022441 hasPublicationYear "2021" @default.
- W3202022441 type Work @default.
- W3202022441 sameAs 3202022441 @default.
- W3202022441 citedByCount "1" @default.
- W3202022441 countsByYear W32020224412021 @default.
- W3202022441 crossrefType "proceedings-article" @default.
- W3202022441 hasAuthorship W3202022441A5012404438 @default.
- W3202022441 hasAuthorship W3202022441A5027019343 @default.
- W3202022441 hasAuthorship W3202022441A5038521974 @default.
- W3202022441 hasAuthorship W3202022441A5041400752 @default.
- W3202022441 hasAuthorship W3202022441A5045996504 @default.
- W3202022441 hasAuthorship W3202022441A5054814122 @default.
- W3202022441 hasConcept C119857082 @default.
- W3202022441 hasConcept C124101348 @default.
- W3202022441 hasConcept C132525143 @default.
- W3202022441 hasConcept C136764020 @default.
- W3202022441 hasConcept C145097563 @default.
- W3202022441 hasConcept C154945302 @default.
- W3202022441 hasConcept C162324750 @default.
- W3202022441 hasConcept C187736073 @default.
- W3202022441 hasConcept C2780451532 @default.
- W3202022441 hasConcept C2780747020 @default.
- W3202022441 hasConcept C2983355114 @default.
- W3202022441 hasConcept C41008148 @default.
- W3202022441 hasConcept C50644808 @default.
- W3202022441 hasConcept C80444323 @default.
- W3202022441 hasConceptScore W3202022441C119857082 @default.
- W3202022441 hasConceptScore W3202022441C124101348 @default.
- W3202022441 hasConceptScore W3202022441C132525143 @default.
- W3202022441 hasConceptScore W3202022441C136764020 @default.
- W3202022441 hasConceptScore W3202022441C145097563 @default.
- W3202022441 hasConceptScore W3202022441C154945302 @default.
- W3202022441 hasConceptScore W3202022441C162324750 @default.
- W3202022441 hasConceptScore W3202022441C187736073 @default.
- W3202022441 hasConceptScore W3202022441C2780451532 @default.
- W3202022441 hasConceptScore W3202022441C2780747020 @default.
- W3202022441 hasConceptScore W3202022441C2983355114 @default.
- W3202022441 hasConceptScore W3202022441C41008148 @default.
- W3202022441 hasConceptScore W3202022441C50644808 @default.
- W3202022441 hasConceptScore W3202022441C80444323 @default.
- W3202022441 hasFunder F4320321001 @default.
- W3202022441 hasFunder F4320322735 @default.
- W3202022441 hasLocation W32020224411 @default.
- W3202022441 hasOpenAccess W3202022441 @default.
- W3202022441 hasPrimaryLocation W32020224411 @default.
- W3202022441 hasRelatedWork W2886330306 @default.
- W3202022441 hasRelatedWork W2966860114 @default.
- W3202022441 hasRelatedWork W3148119887 @default.
- W3202022441 hasRelatedWork W4200284367 @default.
- W3202022441 hasRelatedWork W4214489515 @default.
- W3202022441 hasRelatedWork W4225136133 @default.
- W3202022441 hasRelatedWork W4283520324 @default.
- W3202022441 hasRelatedWork W4312452763 @default.
- W3202022441 hasRelatedWork W4360994966 @default.
- W3202022441 hasRelatedWork W4366363614 @default.
- W3202022441 isParatext "false" @default.
- W3202022441 isRetracted "false" @default.
- W3202022441 magId "3202022441" @default.
- W3202022441 workType "article" @default.