Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202029815> ?p ?o ?g. }
- W3202029815 endingPage "112833" @default.
- W3202029815 startingPage "112833" @default.
- W3202029815 abstract "Manganese (Mn) is an essential metal in humans and animals. However, excess Mn entered environment due to the wide application of Mn in industry and agriculture, and became an environmental pollutant. Exposure to high doses of Mn is toxic to humans and animals (including chickens). Liver is a target organ of Mn poisoning. Nevertheless, there were few studies on whether Mn poisoning damages chicken livers and poisoning mechanism of Mn in chicken livers. Herein, the aim of this study was to explore if oxidative stress, heat shock proteins (HSPs), and inflammatory response were involved in the mechanism of Mn poisoning-caused damage in chicken livers. A chicken Mn poisoning model was established. One hundred and eighty chickens were randomly divided into one control group (containing 127.88 mg Mn kg-1) and three Mn-treated groups (containing 600, 900, and 1800 mg Mn kg-1, respectively). Histomorphological structure was observed via microstructure and ultrastructure. Spectrophotometry was used to detect total antioxidant capacity (T-AOC) and inducible nitric oxide synthase (iNOS) activity, as well as nitric oxide (NO) content. And qRT-PCR was performed to measure mRNA expression of inflammatory genes (nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and iNOS) and heat shock protein (HSP) genes (HSP27, HSP40, HSP60, HSP70, and HSP90). Multivariate correlation analysis, principal component analysis, and cluster analysis were used to demonstrate the reliability of mechanism of Mn poisoning in our experiment. The results indicated that excess Mn led to inflammatory injury at three contents and three time points. Meanwhile, we found that NO content, iNOS activity, and NF-κB, TNF-α, COX-2, PGE2, and iNOS mRNA expression increased after Mn treatment, meaning that exposure to Mn induced inflammatory response via NF-κB pathway in chicken livers. Moreover, excess Mn decreased T-AOC activity, indicating that Mn exposure caused oxidative stress. Furthermore, mRNA expression of above five HSP genes was up-regulated during Mn exposure. Oxidative stress triggered the increase of HSPs and the increase of HSPs mediated inflammatory response induced by Mn. In addition, there were time- and dose-dependent effects on Mn-caused chicken liver inflammatory injury. Taken together, HSPs participated in oxidative stress-mediated inflammatory damage caused by excess Mn in chicken livers via NF-κB pathway. For the first time, we found that oxidative stress can trigger HSP70 and HSPs can trigger poisoning-caused inflammatory damage, which needs to be further explored. This study provided a new insight into environmental pollutants and a reference for further study on molecular mechanisms of poisoning." @default.
- W3202029815 created "2021-10-11" @default.
- W3202029815 creator A5015432509 @default.
- W3202029815 creator A5030691366 @default.
- W3202029815 creator A5032734157 @default.
- W3202029815 creator A5047545698 @default.
- W3202029815 creator A5076131486 @default.
- W3202029815 creator A5082548881 @default.
- W3202029815 date "2021-12-01" @default.
- W3202029815 modified "2023-10-10" @default.
- W3202029815 title "Heat shock proteins took part in oxidative stress-mediated inflammatory injury via NF-κB pathway in excess manganese-treated chicken livers" @default.
- W3202029815 cites W119916385 @default.
- W3202029815 cites W1578861991 @default.
- W3202029815 cites W1963506820 @default.
- W3202029815 cites W1983876668 @default.
- W3202029815 cites W1983987015 @default.
- W3202029815 cites W1990481894 @default.
- W3202029815 cites W2006391226 @default.
- W3202029815 cites W2076697757 @default.
- W3202029815 cites W2076770441 @default.
- W3202029815 cites W2078049108 @default.
- W3202029815 cites W2129284626 @default.
- W3202029815 cites W2316062179 @default.
- W3202029815 cites W2507511859 @default.
- W3202029815 cites W2600375283 @default.
- W3202029815 cites W2624230505 @default.
- W3202029815 cites W2768506102 @default.
- W3202029815 cites W2794335286 @default.
- W3202029815 cites W2799891472 @default.
- W3202029815 cites W2899009117 @default.
- W3202029815 cites W2909415371 @default.
- W3202029815 cites W2913460407 @default.
- W3202029815 cites W2934994448 @default.
- W3202029815 cites W2939994149 @default.
- W3202029815 cites W2944868387 @default.
- W3202029815 cites W2945660480 @default.
- W3202029815 cites W2945899177 @default.
- W3202029815 cites W2950188939 @default.
- W3202029815 cites W2952291710 @default.
- W3202029815 cites W2954926994 @default.
- W3202029815 cites W2990363633 @default.
- W3202029815 cites W2991772838 @default.
- W3202029815 cites W2995084197 @default.
- W3202029815 cites W2995285719 @default.
- W3202029815 cites W2996335527 @default.
- W3202029815 cites W3002355612 @default.
- W3202029815 cites W3004255783 @default.
- W3202029815 cites W3005603360 @default.
- W3202029815 cites W3014748893 @default.
- W3202029815 cites W3018901764 @default.
- W3202029815 cites W3033311737 @default.
- W3202029815 cites W3035428849 @default.
- W3202029815 cites W3043625346 @default.
- W3202029815 cites W3043852432 @default.
- W3202029815 cites W3045637323 @default.
- W3202029815 cites W3082236649 @default.
- W3202029815 cites W3082371349 @default.
- W3202029815 cites W3104318744 @default.
- W3202029815 cites W3114525910 @default.
- W3202029815 cites W3130474587 @default.
- W3202029815 cites W3154750040 @default.
- W3202029815 cites W3156850148 @default.
- W3202029815 cites W3160473494 @default.
- W3202029815 cites W3172548038 @default.
- W3202029815 cites W3178050899 @default.
- W3202029815 cites W3179273706 @default.
- W3202029815 cites W3179532037 @default.
- W3202029815 cites W3184709431 @default.
- W3202029815 doi "https://doi.org/10.1016/j.ecoenv.2021.112833" @default.
- W3202029815 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34600291" @default.
- W3202029815 hasPublicationYear "2021" @default.
- W3202029815 type Work @default.
- W3202029815 sameAs 3202029815 @default.
- W3202029815 citedByCount "42" @default.
- W3202029815 countsByYear W32020298152021 @default.
- W3202029815 countsByYear W32020298152022 @default.
- W3202029815 countsByYear W32020298152023 @default.
- W3202029815 crossrefType "journal-article" @default.
- W3202029815 hasAuthorship W3202029815A5015432509 @default.
- W3202029815 hasAuthorship W3202029815A5030691366 @default.
- W3202029815 hasAuthorship W3202029815A5032734157 @default.
- W3202029815 hasAuthorship W3202029815A5047545698 @default.
- W3202029815 hasAuthorship W3202029815A5076131486 @default.
- W3202029815 hasAuthorship W3202029815A5082548881 @default.
- W3202029815 hasBestOaLocation W32020298151 @default.
- W3202029815 hasConcept C104317684 @default.
- W3202029815 hasConcept C134018914 @default.
- W3202029815 hasConcept C178790620 @default.
- W3202029815 hasConcept C17991360 @default.
- W3202029815 hasConcept C185592680 @default.
- W3202029815 hasConcept C203014093 @default.
- W3202029815 hasConcept C205260736 @default.
- W3202029815 hasConcept C2776151105 @default.
- W3202029815 hasConcept C2777622882 @default.
- W3202029815 hasConcept C2777956040 @default.
- W3202029815 hasConcept C29730261 @default.
- W3202029815 hasConcept C519581460 @default.
- W3202029815 hasConcept C55493867 @default.