Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202030150> ?p ?o ?g. }
- W3202030150 endingPage "103344" @default.
- W3202030150 startingPage "103344" @default.
- W3202030150 abstract "According to the Sendai Framework for Disaster Risk Reduction (2015–2030), disasters have demonstrated that the recovery, rehabilitation and reconstruction phase, which needs to be prepared ahead of a disaster, is a critical opportunity to “Build Back Better”, integrating disaster risk reduction into development measures. In this respect, a significant number of structures, that constitute several European urban nuclei, belong to old constructive typologies, which were designed and built without any consideration for the seismic hazard. One of the most used typologies exhibiting this shortcoming is unreinforced masonry (URM). Therefore, an important step towards increasing resilience of European cities is to deeply understand the seismic behavior of this frequent typology. In order to do so properly, detailed probabilistic nonlinear building models should be developed. However, including the uncertainties associated with this typology is challenging due to the heterogeneity of the different manufacturing techniques, executed under primitive industrial standards, and to the construction techniques, which are dependent on regional uses and criteria in a pre-code scenario. The object of this research is twofold. First, a detailed quantification of the uncertainties related to the mechanical properties of this construction material is conducted. Then, the influence of this variability on the seismic performance of a representative building model of the Eixample district in Barcelona, Spain, is analysed. This building typology represents 72% of the building stock in this district with an average age of 90 years, which means that the construction practice, at that time, was only regulated by early council guidelines that are considered pre-code rules. Specifically, the probabilistic approach is illustrated with a case study performed on an existing seven-story (high-rise) URM. A detailed numerical model of this structure has been developed and randomized taking into account the variability of the material properties. Accordingly, 1000 models were generated and analysed by considering as input different sets of material random variables. The compressive strength, Young modulus, shear modulus and shear strength are chosen and modelled to encompass the material uncertainties. The seismic response of each variant (i.e. selected set of mechanical properties) is obtained through a simplified non-linear static procedure aiming to compare and categorize the influence of the probabilistic input on the seismic performance of the building. Results are presented in terms of correlations between damage parameters and material properties. The analysis carried out shows that the variability in the material properties generates significant uncertainties in the seismic response of URM buildings, leading to over or underestimate expected damage when compared with results based on approaches that do not consider the probabilistic nature of the problem." @default.
- W3202030150 created "2021-10-11" @default.
- W3202030150 creator A5002178559 @default.
- W3202030150 creator A5008367747 @default.
- W3202030150 creator A5018761701 @default.
- W3202030150 creator A5027455663 @default.
- W3202030150 creator A5040799335 @default.
- W3202030150 date "2022-01-01" @default.
- W3202030150 modified "2023-09-26" @default.
- W3202030150 title "Probabilistic seismic assessment of a high-rise URM building" @default.
- W3202030150 cites W1969311277 @default.
- W3202030150 cites W1971087589 @default.
- W3202030150 cites W1974065205 @default.
- W3202030150 cites W197644671 @default.
- W3202030150 cites W1982667731 @default.
- W3202030150 cites W1983889797 @default.
- W3202030150 cites W1986402617 @default.
- W3202030150 cites W2001889795 @default.
- W3202030150 cites W2002292351 @default.
- W3202030150 cites W2004620726 @default.
- W3202030150 cites W2007271261 @default.
- W3202030150 cites W2045450015 @default.
- W3202030150 cites W2049216407 @default.
- W3202030150 cites W2076756288 @default.
- W3202030150 cites W2081940820 @default.
- W3202030150 cites W2082179468 @default.
- W3202030150 cites W2142737111 @default.
- W3202030150 cites W2150559858 @default.
- W3202030150 cites W2152935321 @default.
- W3202030150 cites W2154095493 @default.
- W3202030150 cites W2161692624 @default.
- W3202030150 cites W2165640745 @default.
- W3202030150 cites W2259069454 @default.
- W3202030150 cites W2437209897 @default.
- W3202030150 cites W2478487262 @default.
- W3202030150 cites W2945437099 @default.
- W3202030150 cites W2971036926 @default.
- W3202030150 cites W3118655792 @default.
- W3202030150 doi "https://doi.org/10.1016/j.jobe.2021.103344" @default.
- W3202030150 hasPublicationYear "2022" @default.
- W3202030150 type Work @default.
- W3202030150 sameAs 3202030150 @default.
- W3202030150 citedByCount "6" @default.
- W3202030150 countsByYear W32020301502022 @default.
- W3202030150 crossrefType "journal-article" @default.
- W3202030150 hasAuthorship W3202030150A5002178559 @default.
- W3202030150 hasAuthorship W3202030150A5008367747 @default.
- W3202030150 hasAuthorship W3202030150A5018761701 @default.
- W3202030150 hasAuthorship W3202030150A5027455663 @default.
- W3202030150 hasAuthorship W3202030150A5040799335 @default.
- W3202030150 hasBestOaLocation W32020301502 @default.
- W3202030150 hasConcept C107053488 @default.
- W3202030150 hasConcept C111919701 @default.
- W3202030150 hasConcept C112930515 @default.
- W3202030150 hasConcept C121332964 @default.
- W3202030150 hasConcept C127413603 @default.
- W3202030150 hasConcept C134512083 @default.
- W3202030150 hasConcept C144133560 @default.
- W3202030150 hasConcept C147176958 @default.
- W3202030150 hasConcept C152006893 @default.
- W3202030150 hasConcept C154945302 @default.
- W3202030150 hasConcept C166957645 @default.
- W3202030150 hasConcept C170154142 @default.
- W3202030150 hasConcept C205649164 @default.
- W3202030150 hasConcept C2777212017 @default.
- W3202030150 hasConcept C2778701210 @default.
- W3202030150 hasConcept C2779585090 @default.
- W3202030150 hasConcept C2780750338 @default.
- W3202030150 hasConcept C41008148 @default.
- W3202030150 hasConcept C49937458 @default.
- W3202030150 hasConcept C535899295 @default.
- W3202030150 hasConcept C69361100 @default.
- W3202030150 hasConcept C75795011 @default.
- W3202030150 hasConcept C91375879 @default.
- W3202030150 hasConcept C97355855 @default.
- W3202030150 hasConcept C98045186 @default.
- W3202030150 hasConceptScore W3202030150C107053488 @default.
- W3202030150 hasConceptScore W3202030150C111919701 @default.
- W3202030150 hasConceptScore W3202030150C112930515 @default.
- W3202030150 hasConceptScore W3202030150C121332964 @default.
- W3202030150 hasConceptScore W3202030150C127413603 @default.
- W3202030150 hasConceptScore W3202030150C134512083 @default.
- W3202030150 hasConceptScore W3202030150C144133560 @default.
- W3202030150 hasConceptScore W3202030150C147176958 @default.
- W3202030150 hasConceptScore W3202030150C152006893 @default.
- W3202030150 hasConceptScore W3202030150C154945302 @default.
- W3202030150 hasConceptScore W3202030150C166957645 @default.
- W3202030150 hasConceptScore W3202030150C170154142 @default.
- W3202030150 hasConceptScore W3202030150C205649164 @default.
- W3202030150 hasConceptScore W3202030150C2777212017 @default.
- W3202030150 hasConceptScore W3202030150C2778701210 @default.
- W3202030150 hasConceptScore W3202030150C2779585090 @default.
- W3202030150 hasConceptScore W3202030150C2780750338 @default.
- W3202030150 hasConceptScore W3202030150C41008148 @default.
- W3202030150 hasConceptScore W3202030150C49937458 @default.
- W3202030150 hasConceptScore W3202030150C535899295 @default.
- W3202030150 hasConceptScore W3202030150C69361100 @default.
- W3202030150 hasConceptScore W3202030150C75795011 @default.