Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202039224> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3202039224 endingPage "3132" @default.
- W3202039224 startingPage "3117" @default.
- W3202039224 abstract "Understanding the content of the source code and its regular expression is very difficult when they are written in an unfamiliar language. Pseudo-code explains and describes the content of the code without using syntax or programming language technologies. However, writing Pseudo-code to each code instruction is laborious. Recently, neural machine translation is used to generate textual descriptions for the source code. In this paper, a novel deep learning-based transformer (DLBT) model is proposed for automatic Pseudo-code generation from the source code. The proposed model uses deep learning which is based on Neural Machine Translation (NMT) to work as a language translator. The DLBT is based on the transformer which is an encoder-decoder structure. There are three major components: tokenizer and embeddings, transformer, and post-processing. Each code line is tokenized to dense vector. Then transformer captures the relatedness between the source code and the matching Pseudo-code without the need of Recurrent Neural Network (RNN). At the post-processing step, the generated Pseudo-code is optimized. The proposed model is assessed using a real Python dataset, which contains more than 18,800 lines of a source code written in Python. The experiments show promising performance results compared with other machine translation methods such as Recurrent Neural Network (RNN). The proposed DLBT records 47.32, 68. 49 accuracy and BLEU performance measures, respectively." @default.
- W3202039224 created "2021-10-11" @default.
- W3202039224 creator A5033458445 @default.
- W3202039224 creator A5048337652 @default.
- W3202039224 creator A5061699800 @default.
- W3202039224 creator A5090913323 @default.
- W3202039224 creator A5074551690 @default.
- W3202039224 date "2022-01-01" @default.
- W3202039224 modified "2023-09-25" @default.
- W3202039224 title "DLBT: Deep Learning-Based Transformer to Generate Pseudo-Code from Source Code" @default.
- W3202039224 cites W2064675550 @default.
- W3202039224 cites W2806532810 @default.
- W3202039224 cites W2949297108 @default.
- W3202039224 cites W3094316335 @default.
- W3202039224 doi "https://doi.org/10.32604/cmc.2022.019884" @default.
- W3202039224 hasPublicationYear "2022" @default.
- W3202039224 type Work @default.
- W3202039224 sameAs 3202039224 @default.
- W3202039224 citedByCount "4" @default.
- W3202039224 countsByYear W32020392242022 @default.
- W3202039224 countsByYear W32020392242023 @default.
- W3202039224 crossrefType "journal-article" @default.
- W3202039224 hasAuthorship W3202039224A5033458445 @default.
- W3202039224 hasAuthorship W3202039224A5048337652 @default.
- W3202039224 hasAuthorship W3202039224A5061699800 @default.
- W3202039224 hasAuthorship W3202039224A5074551690 @default.
- W3202039224 hasAuthorship W3202039224A5090913323 @default.
- W3202039224 hasBestOaLocation W32020392241 @default.
- W3202039224 hasConcept C108583219 @default.
- W3202039224 hasConcept C111919701 @default.
- W3202039224 hasConcept C118505674 @default.
- W3202039224 hasConcept C121332964 @default.
- W3202039224 hasConcept C133162039 @default.
- W3202039224 hasConcept C147168706 @default.
- W3202039224 hasConcept C151578736 @default.
- W3202039224 hasConcept C154945302 @default.
- W3202039224 hasConcept C165801399 @default.
- W3202039224 hasConcept C199360897 @default.
- W3202039224 hasConcept C203005215 @default.
- W3202039224 hasConcept C204321447 @default.
- W3202039224 hasConcept C26517878 @default.
- W3202039224 hasConcept C41008148 @default.
- W3202039224 hasConcept C43126263 @default.
- W3202039224 hasConcept C50644808 @default.
- W3202039224 hasConcept C519991488 @default.
- W3202039224 hasConcept C62520636 @default.
- W3202039224 hasConcept C66322947 @default.
- W3202039224 hasConceptScore W3202039224C108583219 @default.
- W3202039224 hasConceptScore W3202039224C111919701 @default.
- W3202039224 hasConceptScore W3202039224C118505674 @default.
- W3202039224 hasConceptScore W3202039224C121332964 @default.
- W3202039224 hasConceptScore W3202039224C133162039 @default.
- W3202039224 hasConceptScore W3202039224C147168706 @default.
- W3202039224 hasConceptScore W3202039224C151578736 @default.
- W3202039224 hasConceptScore W3202039224C154945302 @default.
- W3202039224 hasConceptScore W3202039224C165801399 @default.
- W3202039224 hasConceptScore W3202039224C199360897 @default.
- W3202039224 hasConceptScore W3202039224C203005215 @default.
- W3202039224 hasConceptScore W3202039224C204321447 @default.
- W3202039224 hasConceptScore W3202039224C26517878 @default.
- W3202039224 hasConceptScore W3202039224C41008148 @default.
- W3202039224 hasConceptScore W3202039224C43126263 @default.
- W3202039224 hasConceptScore W3202039224C50644808 @default.
- W3202039224 hasConceptScore W3202039224C519991488 @default.
- W3202039224 hasConceptScore W3202039224C62520636 @default.
- W3202039224 hasConceptScore W3202039224C66322947 @default.
- W3202039224 hasIssue "2" @default.
- W3202039224 hasLocation W32020392241 @default.
- W3202039224 hasOpenAccess W3202039224 @default.
- W3202039224 hasPrimaryLocation W32020392241 @default.
- W3202039224 hasRelatedWork W2338704104 @default.
- W3202039224 hasRelatedWork W270927586 @default.
- W3202039224 hasRelatedWork W283806354 @default.
- W3202039224 hasRelatedWork W2951577679 @default.
- W3202039224 hasRelatedWork W3098839609 @default.
- W3202039224 hasRelatedWork W3191122905 @default.
- W3202039224 hasRelatedWork W3202039224 @default.
- W3202039224 hasRelatedWork W4290719030 @default.
- W3202039224 hasRelatedWork W4297437973 @default.
- W3202039224 hasRelatedWork W4365793459 @default.
- W3202039224 hasVolume "70" @default.
- W3202039224 isParatext "false" @default.
- W3202039224 isRetracted "false" @default.
- W3202039224 magId "3202039224" @default.
- W3202039224 workType "article" @default.