Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202054227> ?p ?o ?g. }
- W3202054227 endingPage "550" @default.
- W3202054227 startingPage "539" @default.
- W3202054227 abstract "Employees are one of the most important resources of a company. The churn of valuable employees significantly affects a company's performance. The design of systems that predict employee churn is critical importance for companies. At this point, machine learning algorithms offer important opportunities for the diagnosis of employee churn. Nowadays, traditional classification algorithms have been replaced by deep learning models. In this study, firstly, a convolutional neural network (CNN) model was applied on a numerical data set for employee churn prediction in retailing. Later, because the data loss is too much in data transformations, a new hybrid extended convolutional decision tree model (ECDT) was proposed by improving the CNN algorithm. Finally, a novel model (ECDT-GRID) was developed by applying grid search optimization to improve the classification accuracy of ECDT. Numerical results showed that the developed ECDT-GRID model outperformed the CNN and ECDT models and basic classification algorithms in terms of classification accuracy, and this model provided an efficient methodology for prediction of employee churn." @default.
- W3202054227 created "2021-10-11" @default.
- W3202054227 creator A5009290438 @default.
- W3202054227 creator A5053420376 @default.
- W3202054227 date "2021-10-07" @default.
- W3202054227 modified "2023-10-10" @default.
- W3202054227 title "A novel deep learning model based on convolutional neural networks for employee churn prediction" @default.
- W3202054227 cites W2021970732 @default.
- W3202054227 cites W2048244076 @default.
- W3202054227 cites W2492245480 @default.
- W3202054227 cites W2514172024 @default.
- W3202054227 cites W2558749735 @default.
- W3202054227 cites W2560738241 @default.
- W3202054227 cites W2594914212 @default.
- W3202054227 cites W2615973898 @default.
- W3202054227 cites W2767195638 @default.
- W3202054227 cites W2769002462 @default.
- W3202054227 cites W2771027729 @default.
- W3202054227 cites W2773143571 @default.
- W3202054227 cites W2783010046 @default.
- W3202054227 cites W2792328488 @default.
- W3202054227 cites W2793003883 @default.
- W3202054227 cites W2799508418 @default.
- W3202054227 cites W2800058394 @default.
- W3202054227 cites W2805391180 @default.
- W3202054227 cites W2809254203 @default.
- W3202054227 cites W2895991254 @default.
- W3202054227 cites W2897791100 @default.
- W3202054227 cites W2901410468 @default.
- W3202054227 cites W2901532222 @default.
- W3202054227 cites W2909056357 @default.
- W3202054227 cites W2919655404 @default.
- W3202054227 cites W2935341733 @default.
- W3202054227 cites W2939488985 @default.
- W3202054227 cites W2954931085 @default.
- W3202054227 cites W2972574169 @default.
- W3202054227 cites W2983114610 @default.
- W3202054227 cites W2985961357 @default.
- W3202054227 cites W2993163104 @default.
- W3202054227 cites W2995577021 @default.
- W3202054227 cites W2999881292 @default.
- W3202054227 cites W3090045915 @default.
- W3202054227 cites W4236137412 @default.
- W3202054227 doi "https://doi.org/10.1002/for.2827" @default.
- W3202054227 hasPublicationYear "2021" @default.
- W3202054227 type Work @default.
- W3202054227 sameAs 3202054227 @default.
- W3202054227 citedByCount "10" @default.
- W3202054227 countsByYear W32020542272022 @default.
- W3202054227 countsByYear W32020542272023 @default.
- W3202054227 crossrefType "journal-article" @default.
- W3202054227 hasAuthorship W3202054227A5009290438 @default.
- W3202054227 hasAuthorship W3202054227A5053420376 @default.
- W3202054227 hasConcept C10485038 @default.
- W3202054227 hasConcept C108583219 @default.
- W3202054227 hasConcept C119857082 @default.
- W3202054227 hasConcept C12267149 @default.
- W3202054227 hasConcept C124101348 @default.
- W3202054227 hasConcept C154945302 @default.
- W3202054227 hasConcept C177264268 @default.
- W3202054227 hasConcept C187691185 @default.
- W3202054227 hasConcept C199360897 @default.
- W3202054227 hasConcept C2524010 @default.
- W3202054227 hasConcept C28719098 @default.
- W3202054227 hasConcept C33923547 @default.
- W3202054227 hasConcept C41008148 @default.
- W3202054227 hasConcept C50644808 @default.
- W3202054227 hasConcept C58489278 @default.
- W3202054227 hasConcept C75684735 @default.
- W3202054227 hasConcept C81363708 @default.
- W3202054227 hasConcept C84525736 @default.
- W3202054227 hasConceptScore W3202054227C10485038 @default.
- W3202054227 hasConceptScore W3202054227C108583219 @default.
- W3202054227 hasConceptScore W3202054227C119857082 @default.
- W3202054227 hasConceptScore W3202054227C12267149 @default.
- W3202054227 hasConceptScore W3202054227C124101348 @default.
- W3202054227 hasConceptScore W3202054227C154945302 @default.
- W3202054227 hasConceptScore W3202054227C177264268 @default.
- W3202054227 hasConceptScore W3202054227C187691185 @default.
- W3202054227 hasConceptScore W3202054227C199360897 @default.
- W3202054227 hasConceptScore W3202054227C2524010 @default.
- W3202054227 hasConceptScore W3202054227C28719098 @default.
- W3202054227 hasConceptScore W3202054227C33923547 @default.
- W3202054227 hasConceptScore W3202054227C41008148 @default.
- W3202054227 hasConceptScore W3202054227C50644808 @default.
- W3202054227 hasConceptScore W3202054227C58489278 @default.
- W3202054227 hasConceptScore W3202054227C75684735 @default.
- W3202054227 hasConceptScore W3202054227C81363708 @default.
- W3202054227 hasConceptScore W3202054227C84525736 @default.
- W3202054227 hasIssue "3" @default.
- W3202054227 hasLocation W32020542271 @default.
- W3202054227 hasOpenAccess W3202054227 @default.
- W3202054227 hasPrimaryLocation W32020542271 @default.
- W3202054227 hasRelatedWork W2337926734 @default.
- W3202054227 hasRelatedWork W2997155179 @default.
- W3202054227 hasRelatedWork W3014300295 @default.
- W3202054227 hasRelatedWork W3189515467 @default.
- W3202054227 hasRelatedWork W4283697347 @default.