Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202058703> ?p ?o ?g. }
- W3202058703 endingPage "229" @default.
- W3202058703 startingPage "217" @default.
- W3202058703 abstract "Abstract Habitat fragmentation has become one of the largest areas of research in conservation biology. Empirical studies into habitat fragmentation impacts typically measure ecological responses to metrics describing fragmentation processes, for example ‘distance to the nearest forest edge’, ‘forest fragment area’ and ‘landscape habitat amount’. However, these studies often fail to sample across representative ranges of fragmentation metrics characterising the study region. They therefore lack the data to account for correlation among multiple fragmentation metrics and for spatial autocorrelation among sample sites, which reduces the strength of derived predictive models. Here, we draw on approaches used in the mining and soil science industry to develop standardised and repeatable protocols for designing optimised sampling schemes of biodiversity in fragmented landscapes that meet three criteria: the distance between sample sites is maximised to reduce spatial autocorrelation, the full range of values of the metrics of interest are sampled and the confounding effects of correlated metrics are minimised. We show that our computational methods can optimise the placement of sample sites in fragmented landscapes to minimise, and in some cases to entirely avoid, over‐ or under‐sampling of fragmentation metrics. Our method is flexible enough to cater for any continuous (e.g. maps of percentage tree cover) or categorical (e.g. habitat and land use types) fragmentation metric, and to simultaneously handle combinations of multiple fragmentation metrics and habitat types. We implement our methods as open‐source code which includes options to mask invalid or inaccessible regions, update designs to adapt to unforeseen constraints in the field and suggest optimal numbers of sample sites for given design criteria. Using a case study landscape, we demonstrate how the approach improves on manually generated sampling designs. We also show that the methods are flexible enough to be applied to landscape studies beyond the field of habitat fragmentation. We introduce our package as a novel research tool that is able to streamline the experimental design process for biodiversity sampling and monitoring at landscape scales, leading to improved data quality and representativeness." @default.
- W3202058703 created "2021-10-11" @default.
- W3202058703 creator A5046865122 @default.
- W3202058703 creator A5051431765 @default.
- W3202058703 creator A5066405913 @default.
- W3202058703 creator A5073149861 @default.
- W3202058703 date "2021-10-15" @default.
- W3202058703 modified "2023-10-16" @default.
- W3202058703 title "Optimising sampling designs for habitat fragmentation studies" @default.
- W3202058703 cites W1966912778 @default.
- W3202058703 cites W1976564294 @default.
- W3202058703 cites W1997837167 @default.
- W3202058703 cites W2013050145 @default.
- W3202058703 cites W2019343545 @default.
- W3202058703 cites W2023312901 @default.
- W3202058703 cites W2031178569 @default.
- W3202058703 cites W2057394945 @default.
- W3202058703 cites W2063241545 @default.
- W3202058703 cites W2068645708 @default.
- W3202058703 cites W2076487142 @default.
- W3202058703 cites W2089792340 @default.
- W3202058703 cites W2109263076 @default.
- W3202058703 cites W2149752076 @default.
- W3202058703 cites W2154480421 @default.
- W3202058703 cites W2280891761 @default.
- W3202058703 cites W2548968642 @default.
- W3202058703 cites W2627012383 @default.
- W3202058703 cites W2884266673 @default.
- W3202058703 cites W2893323708 @default.
- W3202058703 cites W2994192310 @default.
- W3202058703 cites W3001921352 @default.
- W3202058703 cites W4240729432 @default.
- W3202058703 cites W73832987 @default.
- W3202058703 doi "https://doi.org/10.1111/2041-210x.13731" @default.
- W3202058703 hasPublicationYear "2021" @default.
- W3202058703 type Work @default.
- W3202058703 sameAs 3202058703 @default.
- W3202058703 citedByCount "2" @default.
- W3202058703 countsByYear W32020587032022 @default.
- W3202058703 countsByYear W32020587032023 @default.
- W3202058703 crossrefType "journal-article" @default.
- W3202058703 hasAuthorship W3202058703A5046865122 @default.
- W3202058703 hasAuthorship W3202058703A5051431765 @default.
- W3202058703 hasAuthorship W3202058703A5066405913 @default.
- W3202058703 hasAuthorship W3202058703A5073149861 @default.
- W3202058703 hasBestOaLocation W32020587031 @default.
- W3202058703 hasConcept C105795698 @default.
- W3202058703 hasConcept C106131492 @default.
- W3202058703 hasConcept C124101348 @default.
- W3202058703 hasConcept C124886560 @default.
- W3202058703 hasConcept C127413603 @default.
- W3202058703 hasConcept C129848803 @default.
- W3202058703 hasConcept C140779682 @default.
- W3202058703 hasConcept C144024400 @default.
- W3202058703 hasConcept C149923435 @default.
- W3202058703 hasConcept C159620131 @default.
- W3202058703 hasConcept C176217482 @default.
- W3202058703 hasConcept C185933670 @default.
- W3202058703 hasConcept C18903297 @default.
- W3202058703 hasConcept C191015642 @default.
- W3202058703 hasConcept C21547014 @default.
- W3202058703 hasConcept C2778068638 @default.
- W3202058703 hasConcept C2908647359 @default.
- W3202058703 hasConcept C31972630 @default.
- W3202058703 hasConcept C33923547 @default.
- W3202058703 hasConcept C41008148 @default.
- W3202058703 hasConcept C47559259 @default.
- W3202058703 hasConcept C5274069 @default.
- W3202058703 hasConcept C75373757 @default.
- W3202058703 hasConcept C86803240 @default.
- W3202058703 hasConcept C87690585 @default.
- W3202058703 hasConceptScore W3202058703C105795698 @default.
- W3202058703 hasConceptScore W3202058703C106131492 @default.
- W3202058703 hasConceptScore W3202058703C124101348 @default.
- W3202058703 hasConceptScore W3202058703C124886560 @default.
- W3202058703 hasConceptScore W3202058703C127413603 @default.
- W3202058703 hasConceptScore W3202058703C129848803 @default.
- W3202058703 hasConceptScore W3202058703C140779682 @default.
- W3202058703 hasConceptScore W3202058703C144024400 @default.
- W3202058703 hasConceptScore W3202058703C149923435 @default.
- W3202058703 hasConceptScore W3202058703C159620131 @default.
- W3202058703 hasConceptScore W3202058703C176217482 @default.
- W3202058703 hasConceptScore W3202058703C185933670 @default.
- W3202058703 hasConceptScore W3202058703C18903297 @default.
- W3202058703 hasConceptScore W3202058703C191015642 @default.
- W3202058703 hasConceptScore W3202058703C21547014 @default.
- W3202058703 hasConceptScore W3202058703C2778068638 @default.
- W3202058703 hasConceptScore W3202058703C2908647359 @default.
- W3202058703 hasConceptScore W3202058703C31972630 @default.
- W3202058703 hasConceptScore W3202058703C33923547 @default.
- W3202058703 hasConceptScore W3202058703C41008148 @default.
- W3202058703 hasConceptScore W3202058703C47559259 @default.
- W3202058703 hasConceptScore W3202058703C5274069 @default.
- W3202058703 hasConceptScore W3202058703C75373757 @default.
- W3202058703 hasConceptScore W3202058703C86803240 @default.
- W3202058703 hasConceptScore W3202058703C87690585 @default.
- W3202058703 hasFunder F4320334629 @default.
- W3202058703 hasFunder F4320338352 @default.