Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202069230> ?p ?o ?g. }
- W3202069230 endingPage "11428" @default.
- W3202069230 startingPage "11417" @default.
- W3202069230 abstract "Landslide detection mapping (LDM) is the basis of the field of landslide disaster prevention; however, it has faced certain difficulties. The Three Gorges Reservoir area of the Yangtze River has been one of the most intensively evaluated areas for landslide prevention in the world, due to the high frequency of landslide disasters here. In this study, we constructed an accurate LDM model based on convolutional neural networks (CNNs), residual neural networks (ResNets), and dense convolutional neural networks (DenseNets) that considers 'ZY-3' high spatial resolution (HSR) data and conditioning factors (CFs). In this work, nineteen factors based on remote sensing (RS) images, topographical and geological data associated with historical landslide locations were randomly divided into training (70% of total) and testing (30%) datasets. The experimental results show that the accuracy (ACC) of these three LDM models is above 0.95, indicating that the deep neural networks (DNNs) aimed at landslide detection performed well. Furthermore, DenseNet with RS images and CFs can accurately detect landslides. Specifically, DenseNet with RS images and CFs outperforms the other five models by considering the accuracy evaluation indexes, which exhibited Kappa coefficient improvements of 0.01-0.04 and ACC improvements of 0.02%-0.3%. Among all the factors, elevation factor has a high importance of 0.727, which is the most important factors found in this landslide model construction experiment." @default.
- W3202069230 created "2021-10-11" @default.
- W3202069230 creator A5011327859 @default.
- W3202069230 creator A5054292278 @default.
- W3202069230 creator A5063163226 @default.
- W3202069230 creator A5063406632 @default.
- W3202069230 date "2021-01-01" @default.
- W3202069230 modified "2023-10-16" @default.
- W3202069230 title "Landslide Detection Mapping Employing CNN, ResNet, and DenseNet in the Three Gorges Reservoir, China" @default.
- W3202069230 cites W1536680647 @default.
- W3202069230 cites W1971095756 @default.
- W3202069230 cites W1975382649 @default.
- W3202069230 cites W1983769347 @default.
- W3202069230 cites W2005948635 @default.
- W3202069230 cites W2012118327 @default.
- W3202069230 cites W2013713766 @default.
- W3202069230 cites W2076063813 @default.
- W3202069230 cites W2092694555 @default.
- W3202069230 cites W2097117768 @default.
- W3202069230 cites W2119843603 @default.
- W3202069230 cites W2124217455 @default.
- W3202069230 cites W2134955829 @default.
- W3202069230 cites W2155789665 @default.
- W3202069230 cites W2162380055 @default.
- W3202069230 cites W2163039960 @default.
- W3202069230 cites W2171612326 @default.
- W3202069230 cites W2194775991 @default.
- W3202069230 cites W2278830514 @default.
- W3202069230 cites W2287960510 @default.
- W3202069230 cites W2399645084 @default.
- W3202069230 cites W2414813772 @default.
- W3202069230 cites W2417137833 @default.
- W3202069230 cites W2538694149 @default.
- W3202069230 cites W2567854072 @default.
- W3202069230 cites W2578756457 @default.
- W3202069230 cites W2618530766 @default.
- W3202069230 cites W2622975479 @default.
- W3202069230 cites W2792324107 @default.
- W3202069230 cites W2793395720 @default.
- W3202069230 cites W2793729791 @default.
- W3202069230 cites W2793831793 @default.
- W3202069230 cites W2842776424 @default.
- W3202069230 cites W2898472848 @default.
- W3202069230 cites W2900992113 @default.
- W3202069230 cites W2905019064 @default.
- W3202069230 cites W2908624219 @default.
- W3202069230 cites W2922361723 @default.
- W3202069230 cites W2941125029 @default.
- W3202069230 cites W2941769495 @default.
- W3202069230 cites W2949570583 @default.
- W3202069230 cites W2954332586 @default.
- W3202069230 cites W2963446712 @default.
- W3202069230 cites W2967019526 @default.
- W3202069230 cites W2970904865 @default.
- W3202069230 cites W2973163177 @default.
- W3202069230 cites W2984248680 @default.
- W3202069230 cites W2985812309 @default.
- W3202069230 cites W2994619674 @default.
- W3202069230 cites W2997417103 @default.
- W3202069230 cites W3008424049 @default.
- W3202069230 cites W3010717703 @default.
- W3202069230 cites W3010982166 @default.
- W3202069230 cites W3011646207 @default.
- W3202069230 cites W3012555526 @default.
- W3202069230 cites W3024476031 @default.
- W3202069230 cites W3035335060 @default.
- W3202069230 cites W3043257208 @default.
- W3202069230 cites W3045566724 @default.
- W3202069230 cites W3048690458 @default.
- W3202069230 cites W3084280717 @default.
- W3202069230 cites W3091852895 @default.
- W3202069230 cites W3103315784 @default.
- W3202069230 cites W3108410302 @default.
- W3202069230 cites W3111228653 @default.
- W3202069230 cites W3118496544 @default.
- W3202069230 cites W3121287041 @default.
- W3202069230 cites W3123392265 @default.
- W3202069230 cites W3163894833 @default.
- W3202069230 cites W3176330035 @default.
- W3202069230 cites W3180799764 @default.
- W3202069230 cites W3182928821 @default.
- W3202069230 cites W3194808133 @default.
- W3202069230 cites W3197529628 @default.
- W3202069230 cites W4249970585 @default.
- W3202069230 doi "https://doi.org/10.1109/jstars.2021.3117975" @default.
- W3202069230 hasPublicationYear "2021" @default.
- W3202069230 type Work @default.
- W3202069230 sameAs 3202069230 @default.
- W3202069230 citedByCount "27" @default.
- W3202069230 countsByYear W32020692302021 @default.
- W3202069230 countsByYear W32020692302022 @default.
- W3202069230 countsByYear W32020692302023 @default.
- W3202069230 crossrefType "journal-article" @default.
- W3202069230 hasAuthorship W3202069230A5011327859 @default.
- W3202069230 hasAuthorship W3202069230A5054292278 @default.
- W3202069230 hasAuthorship W3202069230A5063163226 @default.
- W3202069230 hasAuthorship W3202069230A5063406632 @default.
- W3202069230 hasBestOaLocation W32020692301 @default.