Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202078654> ?p ?o ?g. }
- W3202078654 endingPage "1076" @default.
- W3202078654 startingPage "1076" @default.
- W3202078654 abstract "The main task of mineral processing plants is to further process the raw material extracted in the mining faces into a concentrate with the highest possible concentration of the final product. In practice, it is a complex process in which several stages can be distinguished. After the ore has been transported to the surface by the skip shaft, one of the first steps is sieving the ore, which is typically performed using vibrating mining screens. In a typical Ore Enrichment Plant, the screening process is carried out by several such machines. This is a typical bottleneck in the technological chain. For this reason, the main challenge for users is to achieve the highest reliability and efficiency of these technical facilities. The solution is to focus on predictive maintenance strategies based on the development of monitoring and advanced diagnostic procedures capable of estimating the time of safe operation. This work was developed as part of an advanced diagnostic system ensuring comprehensive technical conditioning and early fault detection of components such as the engine, transmission, bearings, springs, and screen. This article focuses on vibration data. The problem of damage detection in the presence of periodically impulsive components resulting from falling feed material on the screen and its further screening process has been considered. These disturbances are of a non-Gaussian noise nature, the elimination of which is essential to extract the fault-related signal of interest. One solution may be to properly smooth and filter the raw signal. In this article, a wavelet filtering technique is applied. First, the wavelet filtering procedure is described. In the next step, the performance of a wavelet filter is investigated depending on its parameters. Then, the results of wavelet filtering are compared with such methods as low-pass filtering and smoothing using a moving average. Finally, the impact of wavelet filtering on the calculation of screen trajectories is investigated." @default.
- W3202078654 created "2021-10-11" @default.
- W3202078654 creator A5004628002 @default.
- W3202078654 creator A5014219532 @default.
- W3202078654 creator A5079491980 @default.
- W3202078654 date "2021-09-30" @default.
- W3202078654 modified "2023-10-16" @default.
- W3202078654 title "Application of Wavelet Filtering to Vibrational Signals from the Mining Screen for Spring Condition Monitoring" @default.
- W3202078654 cites W1964576035 @default.
- W3202078654 cites W1968362603 @default.
- W3202078654 cites W1975134266 @default.
- W3202078654 cites W2004733838 @default.
- W3202078654 cites W2008278511 @default.
- W3202078654 cites W2031940127 @default.
- W3202078654 cites W2053070169 @default.
- W3202078654 cites W2054640142 @default.
- W3202078654 cites W2072536821 @default.
- W3202078654 cites W2111619626 @default.
- W3202078654 cites W2113587304 @default.
- W3202078654 cites W2116258620 @default.
- W3202078654 cites W2146842127 @default.
- W3202078654 cites W2165009489 @default.
- W3202078654 cites W2472531481 @default.
- W3202078654 cites W2594650647 @default.
- W3202078654 cites W2751627874 @default.
- W3202078654 cites W2767385682 @default.
- W3202078654 cites W2997612454 @default.
- W3202078654 cites W3035936109 @default.
- W3202078654 cites W3081915921 @default.
- W3202078654 cites W3083963384 @default.
- W3202078654 cites W3090381681 @default.
- W3202078654 cites W3099344830 @default.
- W3202078654 cites W3118068016 @default.
- W3202078654 doi "https://doi.org/10.3390/min11101076" @default.
- W3202078654 hasPublicationYear "2021" @default.
- W3202078654 type Work @default.
- W3202078654 sameAs 3202078654 @default.
- W3202078654 citedByCount "2" @default.
- W3202078654 countsByYear W32020786542021 @default.
- W3202078654 countsByYear W32020786542023 @default.
- W3202078654 crossrefType "journal-article" @default.
- W3202078654 hasAuthorship W3202078654A5004628002 @default.
- W3202078654 hasAuthorship W3202078654A5014219532 @default.
- W3202078654 hasAuthorship W3202078654A5079491980 @default.
- W3202078654 hasBestOaLocation W32020786541 @default.
- W3202078654 hasConcept C104267543 @default.
- W3202078654 hasConcept C106131492 @default.
- W3202078654 hasConcept C111919701 @default.
- W3202078654 hasConcept C115961682 @default.
- W3202078654 hasConcept C119599485 @default.
- W3202078654 hasConcept C121332964 @default.
- W3202078654 hasConcept C127313418 @default.
- W3202078654 hasConcept C127413603 @default.
- W3202078654 hasConcept C149635348 @default.
- W3202078654 hasConcept C152745839 @default.
- W3202078654 hasConcept C154945302 @default.
- W3202078654 hasConcept C163258240 @default.
- W3202078654 hasConcept C165205528 @default.
- W3202078654 hasConcept C172707124 @default.
- W3202078654 hasConcept C175551986 @default.
- W3202078654 hasConcept C198394728 @default.
- W3202078654 hasConcept C199360897 @default.
- W3202078654 hasConcept C200601418 @default.
- W3202078654 hasConcept C21880701 @default.
- W3202078654 hasConcept C24890656 @default.
- W3202078654 hasConcept C2775846686 @default.
- W3202078654 hasConcept C2779843651 @default.
- W3202078654 hasConcept C2780513914 @default.
- W3202078654 hasConcept C31972630 @default.
- W3202078654 hasConcept C41008148 @default.
- W3202078654 hasConcept C43214815 @default.
- W3202078654 hasConcept C47432892 @default.
- W3202078654 hasConcept C62520636 @default.
- W3202078654 hasConcept C84462506 @default.
- W3202078654 hasConcept C9390403 @default.
- W3202078654 hasConcept C98045186 @default.
- W3202078654 hasConcept C99498987 @default.
- W3202078654 hasConceptScore W3202078654C104267543 @default.
- W3202078654 hasConceptScore W3202078654C106131492 @default.
- W3202078654 hasConceptScore W3202078654C111919701 @default.
- W3202078654 hasConceptScore W3202078654C115961682 @default.
- W3202078654 hasConceptScore W3202078654C119599485 @default.
- W3202078654 hasConceptScore W3202078654C121332964 @default.
- W3202078654 hasConceptScore W3202078654C127313418 @default.
- W3202078654 hasConceptScore W3202078654C127413603 @default.
- W3202078654 hasConceptScore W3202078654C149635348 @default.
- W3202078654 hasConceptScore W3202078654C152745839 @default.
- W3202078654 hasConceptScore W3202078654C154945302 @default.
- W3202078654 hasConceptScore W3202078654C163258240 @default.
- W3202078654 hasConceptScore W3202078654C165205528 @default.
- W3202078654 hasConceptScore W3202078654C172707124 @default.
- W3202078654 hasConceptScore W3202078654C175551986 @default.
- W3202078654 hasConceptScore W3202078654C198394728 @default.
- W3202078654 hasConceptScore W3202078654C199360897 @default.
- W3202078654 hasConceptScore W3202078654C200601418 @default.
- W3202078654 hasConceptScore W3202078654C21880701 @default.
- W3202078654 hasConceptScore W3202078654C24890656 @default.
- W3202078654 hasConceptScore W3202078654C2775846686 @default.