Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202085102> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3202085102 endingPage "115927" @default.
- W3202085102 startingPage "115927" @default.
- W3202085102 abstract "Accurately cytopathological diagnosis of Papillary Thyroid Carcinoma (PTC) is of importance for reducing costs and increasing efficiency of treatments. In this paper, we pursue that goal by introducing artificial intelligence (AI) for automatic classification of malignant PTC cell clusters from Fine Needle Aspiration Cytology (FNAC) processed by ThinPrep. High-resolution cytological images obtained with a 40 × objective lens digital camera attached to an Olympus microscope were segmented into fragments and then divided into training, validation, and testing subsets. Fragments are non-overlapped patches containing only regions-of-interest that cover informative tissue structures for making proper diagnoses. Deep learning CNN models were pre-trained and fine-tuned on large-scale ImageNet domain before they were re-trained on cytology fragments. Moreover, we proposed a method to compute certainty of the patient-level prediction that undoubtedly provides additional evidence for reliability and confidence of the prediction. Results showed that the best classification performance on digital FNAC images achieved using DenseNet161, obtaining a mean accuracy of 0.9556 (p < 0.01), a mean sensitivity of 0.9734, and a mean specificity of 0.9405 on yet-to-be-seen test-set. Ensemble learning findings suggested combinations of AdaBoost classifier with multiple CNN models boosted predictive performances, up to 0.9971 accuracy. Moreover, stain normalization introduced by Reinhard increased the predictive ability, outperforming histogram specification, and Macenko methods. Presented findings demonstrate deep learning can integrate into computer-aided diagnosis systems to support cytopathologists in accurate diagnosis of PTC." @default.
- W3202085102 created "2021-10-11" @default.
- W3202085102 creator A5032209991 @default.
- W3202085102 creator A5055094328 @default.
- W3202085102 creator A5065893759 @default.
- W3202085102 creator A5082495705 @default.
- W3202085102 date "2022-02-01" @default.
- W3202085102 modified "2023-10-18" @default.
- W3202085102 title "An ensemble deep learning for automatic prediction of papillary thyroid carcinoma using fine needle aspiration cytology" @default.
- W3202085102 cites W1561712756 @default.
- W3202085102 cites W2057114171 @default.
- W3202085102 cites W2060097768 @default.
- W3202085102 cites W2072569807 @default.
- W3202085102 cites W2090399569 @default.
- W3202085102 cites W2117539524 @default.
- W3202085102 cites W2129112648 @default.
- W3202085102 cites W2132162500 @default.
- W3202085102 cites W2169245092 @default.
- W3202085102 cites W2183341477 @default.
- W3202085102 cites W2194775991 @default.
- W3202085102 cites W2620578070 @default.
- W3202085102 cites W2766712571 @default.
- W3202085102 cites W2885824038 @default.
- W3202085102 cites W2912815642 @default.
- W3202085102 cites W2917127475 @default.
- W3202085102 cites W2945434083 @default.
- W3202085102 cites W2959557291 @default.
- W3202085102 cites W2963446712 @default.
- W3202085102 cites W2972621596 @default.
- W3202085102 cites W3033382446 @default.
- W3202085102 cites W3102564565 @default.
- W3202085102 doi "https://doi.org/10.1016/j.eswa.2021.115927" @default.
- W3202085102 hasPublicationYear "2022" @default.
- W3202085102 type Work @default.
- W3202085102 sameAs 3202085102 @default.
- W3202085102 citedByCount "6" @default.
- W3202085102 countsByYear W32020851022022 @default.
- W3202085102 countsByYear W32020851022023 @default.
- W3202085102 crossrefType "journal-article" @default.
- W3202085102 hasAuthorship W3202085102A5032209991 @default.
- W3202085102 hasAuthorship W3202085102A5055094328 @default.
- W3202085102 hasAuthorship W3202085102A5065893759 @default.
- W3202085102 hasAuthorship W3202085102A5082495705 @default.
- W3202085102 hasConcept C108583219 @default.
- W3202085102 hasConcept C119857082 @default.
- W3202085102 hasConcept C126838900 @default.
- W3202085102 hasConcept C141404830 @default.
- W3202085102 hasConcept C153180895 @default.
- W3202085102 hasConcept C154945302 @default.
- W3202085102 hasConcept C2777522853 @default.
- W3202085102 hasConcept C41008148 @default.
- W3202085102 hasConcept C534262118 @default.
- W3202085102 hasConcept C71924100 @default.
- W3202085102 hasConcept C95623464 @default.
- W3202085102 hasConceptScore W3202085102C108583219 @default.
- W3202085102 hasConceptScore W3202085102C119857082 @default.
- W3202085102 hasConceptScore W3202085102C126838900 @default.
- W3202085102 hasConceptScore W3202085102C141404830 @default.
- W3202085102 hasConceptScore W3202085102C153180895 @default.
- W3202085102 hasConceptScore W3202085102C154945302 @default.
- W3202085102 hasConceptScore W3202085102C2777522853 @default.
- W3202085102 hasConceptScore W3202085102C41008148 @default.
- W3202085102 hasConceptScore W3202085102C534262118 @default.
- W3202085102 hasConceptScore W3202085102C71924100 @default.
- W3202085102 hasConceptScore W3202085102C95623464 @default.
- W3202085102 hasLocation W32020851021 @default.
- W3202085102 hasOpenAccess W3202085102 @default.
- W3202085102 hasPrimaryLocation W32020851021 @default.
- W3202085102 hasRelatedWork W1975767702 @default.
- W3202085102 hasRelatedWork W2002351707 @default.
- W3202085102 hasRelatedWork W2035096001 @default.
- W3202085102 hasRelatedWork W2327035729 @default.
- W3202085102 hasRelatedWork W2923621274 @default.
- W3202085102 hasRelatedWork W4210389441 @default.
- W3202085102 hasRelatedWork W4210778126 @default.
- W3202085102 hasRelatedWork W4249377076 @default.
- W3202085102 hasRelatedWork W4293699968 @default.
- W3202085102 hasRelatedWork W4312843811 @default.
- W3202085102 hasVolume "188" @default.
- W3202085102 isParatext "false" @default.
- W3202085102 isRetracted "false" @default.
- W3202085102 magId "3202085102" @default.
- W3202085102 workType "article" @default.