Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202097980> ?p ?o ?g. }
- W3202097980 abstract "Chemoradiotherapy is the standard treatment for moderate and advanced oesophageal cancer. The aim of this study was to establish a predictive model based on enhanced computed tomography examination, and to evaluate its clinical value for detecting locoregional recurrence-free survival (LRFS) in cases of oesophageal squamous cell carcinoma after radiotherapy.In total, 218 patients with pathologically diagnosed oesophageal squamous cell carcinoma who received radical chemoradiotherapy from July 2016 to December 2017 were collected in this study. Patients were randomly divided into either a training group (n=153) or a validation group (n=65) in a 7:3 ratio. Clinical patient information was then recorded. The enhanced computed tomography scan images of the patients were imported into 3D-slicer software (version 4.8.1), and the radiomic features were extracted by the Python programme package. In the training group, the dimensionality reduction of the radiomic features was implemented by Lasso regression, and then a radiological label, the model of predicting LRFS, was established and evaluated. To achieve a better prediction performance, the radiological label was combined with clinical risk factor information to construct a radiomics nomogram. A receiver operating characteristic curve was used to evaluate the efficacy of different models. Calibration curves were used to assess the consistency between the predicted and observed recurrence risk, and the Hosmer-Lemeshow method was used to test model fitness. The C-index evaluated the discriminating ability of the prediction model. Decision curve analysis was used to determine the clinical value of the constructed prediction model.Of the 218 patients followed up in this study, 44 patients (28.8%) in the training group and 21 patients (32.3%) in the validation group experienced recurrence. There was no difference in LRFS between the two groups (χ2 = 0.525, P=0.405). Lasso regression was used in the training group to select six significant radiomic features. The radiological label established using these six features had a satisfactory prediction performance. The C-index was 0.716 (95% CI: 0.645-0.787) in the training group and 0.718 (95% CI: 0.612-0.825) in the validation group. The radiomics nomogram, which included the radiological label and clinical risk factors, achieved a better prediction than the radiological label alone. The C-index was 0.742 (95% CI: 0.674-0.810) in the training group and 0.715 (95% CI: 0.609-0.820) in the validation group. The results of the calibration curve and decision curve analyses indicated that the radiomics nomogram was superior in predicting LRFS of oesophageal carcinoma after radiotherapy.A radiological label was successfully established to predict the LRFS of oesophageal squamous cell carcinoma after radiotherapy. The radiomics nomogram was complementary to the clinical prognostic features and could improve the prediction of the LRFS after radiotherapy for oesophageal cancer." @default.
- W3202097980 created "2021-10-11" @default.
- W3202097980 creator A5001928494 @default.
- W3202097980 creator A5024672970 @default.
- W3202097980 creator A5025087223 @default.
- W3202097980 creator A5039924898 @default.
- W3202097980 creator A5071672663 @default.
- W3202097980 creator A5090012174 @default.
- W3202097980 date "2021-09-24" @default.
- W3202097980 modified "2023-10-18" @default.
- W3202097980 title "Prediction of Locoregional Recurrence-Free Survival of Oesophageal Squamous Cell Carcinoma After Chemoradiotherapy Based on an Enhanced CT-Based Radiomics Model" @default.
- W3202097980 cites W1818747732 @default.
- W3202097980 cites W1829208371 @default.
- W3202097980 cites W2022280107 @default.
- W3202097980 cites W2032942936 @default.
- W3202097980 cites W2100394877 @default.
- W3202097980 cites W2128739912 @default.
- W3202097980 cites W2137696504 @default.
- W3202097980 cites W2166365730 @default.
- W3202097980 cites W2268572259 @default.
- W3202097980 cites W2346343836 @default.
- W3202097980 cites W2559943376 @default.
- W3202097980 cites W2573424892 @default.
- W3202097980 cites W2606066768 @default.
- W3202097980 cites W2739655048 @default.
- W3202097980 cites W2753148287 @default.
- W3202097980 cites W2767128594 @default.
- W3202097980 cites W2779737238 @default.
- W3202097980 cites W2790167783 @default.
- W3202097980 cites W2801433791 @default.
- W3202097980 cites W2885882002 @default.
- W3202097980 cites W2889646458 @default.
- W3202097980 cites W2889839140 @default.
- W3202097980 cites W2893300378 @default.
- W3202097980 cites W2896617188 @default.
- W3202097980 cites W2899679548 @default.
- W3202097980 cites W2901503814 @default.
- W3202097980 cites W2917837889 @default.
- W3202097980 cites W2925781753 @default.
- W3202097980 cites W2939040895 @default.
- W3202097980 cites W2946540449 @default.
- W3202097980 cites W2981088775 @default.
- W3202097980 cites W2985583390 @default.
- W3202097980 cites W3027616279 @default.
- W3202097980 cites W3047632364 @default.
- W3202097980 cites W3083880213 @default.
- W3202097980 cites W3122590454 @default.
- W3202097980 cites W4211125721 @default.
- W3202097980 cites W4240595877 @default.
- W3202097980 doi "https://doi.org/10.3389/fonc.2021.739933" @default.
- W3202097980 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8499696" @default.
- W3202097980 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34631575" @default.
- W3202097980 hasPublicationYear "2021" @default.
- W3202097980 type Work @default.
- W3202097980 sameAs 3202097980 @default.
- W3202097980 citedByCount "3" @default.
- W3202097980 countsByYear W32020979802023 @default.
- W3202097980 crossrefType "journal-article" @default.
- W3202097980 hasAuthorship W3202097980A5001928494 @default.
- W3202097980 hasAuthorship W3202097980A5024672970 @default.
- W3202097980 hasAuthorship W3202097980A5025087223 @default.
- W3202097980 hasAuthorship W3202097980A5039924898 @default.
- W3202097980 hasAuthorship W3202097980A5071672663 @default.
- W3202097980 hasAuthorship W3202097980A5090012174 @default.
- W3202097980 hasBestOaLocation W32020979801 @default.
- W3202097980 hasConcept C126322002 @default.
- W3202097980 hasConcept C126838900 @default.
- W3202097980 hasConcept C143998085 @default.
- W3202097980 hasConcept C2776530083 @default.
- W3202097980 hasConcept C2776833033 @default.
- W3202097980 hasConcept C2778424827 @default.
- W3202097980 hasConcept C2778559731 @default.
- W3202097980 hasConcept C34626388 @default.
- W3202097980 hasConcept C509974204 @default.
- W3202097980 hasConcept C58471807 @default.
- W3202097980 hasConcept C71924100 @default.
- W3202097980 hasConceptScore W3202097980C126322002 @default.
- W3202097980 hasConceptScore W3202097980C126838900 @default.
- W3202097980 hasConceptScore W3202097980C143998085 @default.
- W3202097980 hasConceptScore W3202097980C2776530083 @default.
- W3202097980 hasConceptScore W3202097980C2776833033 @default.
- W3202097980 hasConceptScore W3202097980C2778424827 @default.
- W3202097980 hasConceptScore W3202097980C2778559731 @default.
- W3202097980 hasConceptScore W3202097980C34626388 @default.
- W3202097980 hasConceptScore W3202097980C509974204 @default.
- W3202097980 hasConceptScore W3202097980C58471807 @default.
- W3202097980 hasConceptScore W3202097980C71924100 @default.
- W3202097980 hasFunder F4320324965 @default.
- W3202097980 hasFunder F4320327720 @default.
- W3202097980 hasLocation W32020979801 @default.
- W3202097980 hasLocation W32020979802 @default.
- W3202097980 hasLocation W32020979803 @default.
- W3202097980 hasLocation W32020979804 @default.
- W3202097980 hasLocation W32020979805 @default.
- W3202097980 hasOpenAccess W3202097980 @default.
- W3202097980 hasPrimaryLocation W32020979801 @default.
- W3202097980 hasRelatedWork W2886637603 @default.
- W3202097980 hasRelatedWork W2936214270 @default.
- W3202097980 hasRelatedWork W3074116665 @default.
- W3202097980 hasRelatedWork W3104673869 @default.