Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202099717> ?p ?o ?g. }
- W3202099717 endingPage "2379" @default.
- W3202099717 startingPage "2359" @default.
- W3202099717 abstract "Social media has affected people’s information sources. Since most of the news on social media is not verified by a central authority, it may contain fake news for various reasons such as advertising and propaganda. Considering an average of 500 million tweets were posted daily on Twitter alone in the year of 2020, it is possible to control each share only with smart systems. In this study, we use Natural Language Processing methods to detect fake news for Turkish-language posts on certain topics on Twitter. Furthermore, we examine the follow/follower relations of the users who shared fake-real news on the same subjects through social network analysis methods and visualization tools. Various supervised and unsupervised learning algorithms have been tested with different parameters. The most successful F1 score of fake news detection was obtained with the support vector machines algorithm with 0.9. People who share fake/true news can help in the separation of subgroups in the social network created by people and their followers. The results show that fake news propagation networks may show different characteristics in their own subject based on the follow/follower network." @default.
- W3202099717 created "2021-10-11" @default.
- W3202099717 creator A5033865035 @default.
- W3202099717 creator A5052193317 @default.
- W3202099717 creator A5058675386 @default.
- W3202099717 date "2021-10-01" @default.
- W3202099717 modified "2023-10-18" @default.
- W3202099717 title "Detection of Turkish Fake News in Twitter with Machine Learning Algorithms" @default.
- W3202099717 cites W1175502716 @default.
- W3202099717 cites W1560851690 @default.
- W3202099717 cites W1902027874 @default.
- W3202099717 cites W19684845 @default.
- W3202099717 cites W1969074810 @default.
- W3202099717 cites W1978710835 @default.
- W3202099717 cites W1995698352 @default.
- W3202099717 cites W2001619934 @default.
- W3202099717 cites W2024369724 @default.
- W3202099717 cites W2032897813 @default.
- W3202099717 cites W2039222427 @default.
- W3202099717 cites W2043900215 @default.
- W3202099717 cites W2044064563 @default.
- W3202099717 cites W2049387654 @default.
- W3202099717 cites W2076219102 @default.
- W3202099717 cites W2076959242 @default.
- W3202099717 cites W2086413055 @default.
- W3202099717 cites W2090018148 @default.
- W3202099717 cites W2101196063 @default.
- W3202099717 cites W2124168655 @default.
- W3202099717 cites W2127775997 @default.
- W3202099717 cites W2131774270 @default.
- W3202099717 cites W2138621811 @default.
- W3202099717 cites W2156909104 @default.
- W3202099717 cites W2157331557 @default.
- W3202099717 cites W2163898372 @default.
- W3202099717 cites W2168332560 @default.
- W3202099717 cites W2169585110 @default.
- W3202099717 cites W2190207511 @default.
- W3202099717 cites W2232384272 @default.
- W3202099717 cites W2241850672 @default.
- W3202099717 cites W2470673105 @default.
- W3202099717 cites W2516338333 @default.
- W3202099717 cites W2727582050 @default.
- W3202099717 cites W2740560510 @default.
- W3202099717 cites W2753434909 @default.
- W3202099717 cites W2766411764 @default.
- W3202099717 cites W2769470793 @default.
- W3202099717 cites W2783693193 @default.
- W3202099717 cites W2798640866 @default.
- W3202099717 cites W2803263920 @default.
- W3202099717 cites W2805962188 @default.
- W3202099717 cites W2888980754 @default.
- W3202099717 cites W2911964244 @default.
- W3202099717 cites W2912386632 @default.
- W3202099717 cites W2914393943 @default.
- W3202099717 cites W2922103104 @default.
- W3202099717 cites W2934222232 @default.
- W3202099717 cites W2942656565 @default.
- W3202099717 cites W2962739339 @default.
- W3202099717 cites W2963416784 @default.
- W3202099717 cites W2964311317 @default.
- W3202099717 cites W2969250977 @default.
- W3202099717 cites W2975067599 @default.
- W3202099717 cites W2986975783 @default.
- W3202099717 cites W2997979357 @default.
- W3202099717 cites W3001975036 @default.
- W3202099717 cites W3003282372 @default.
- W3202099717 cites W2138518196 @default.
- W3202099717 doi "https://doi.org/10.1007/s13369-021-06223-0" @default.
- W3202099717 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8485117" @default.
- W3202099717 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34611504" @default.
- W3202099717 hasPublicationYear "2021" @default.
- W3202099717 type Work @default.
- W3202099717 sameAs 3202099717 @default.
- W3202099717 citedByCount "8" @default.
- W3202099717 countsByYear W32020997172022 @default.
- W3202099717 countsByYear W32020997172023 @default.
- W3202099717 crossrefType "journal-article" @default.
- W3202099717 hasAuthorship W3202099717A5033865035 @default.
- W3202099717 hasAuthorship W3202099717A5052193317 @default.
- W3202099717 hasAuthorship W3202099717A5058675386 @default.
- W3202099717 hasBestOaLocation W32020997171 @default.
- W3202099717 hasConcept C108827166 @default.
- W3202099717 hasConcept C112698675 @default.
- W3202099717 hasConcept C11413529 @default.
- W3202099717 hasConcept C119857082 @default.
- W3202099717 hasConcept C12267149 @default.
- W3202099717 hasConcept C136764020 @default.
- W3202099717 hasConcept C138885662 @default.
- W3202099717 hasConcept C144133560 @default.
- W3202099717 hasConcept C154945302 @default.
- W3202099717 hasConcept C2777855551 @default.
- W3202099717 hasConcept C2779756789 @default.
- W3202099717 hasConcept C2781121862 @default.
- W3202099717 hasConcept C41008148 @default.
- W3202099717 hasConcept C41895202 @default.
- W3202099717 hasConcept C4727928 @default.
- W3202099717 hasConcept C518677369 @default.
- W3202099717 hasConceptScore W3202099717C108827166 @default.