Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202113604> ?p ?o ?g. }
- W3202113604 endingPage "138715" @default.
- W3202113604 startingPage "138677" @default.
- W3202113604 abstract "Various well-known health diseases affect millions of people worldwide. In the early stage, the clinicians may not recognize various clinical symptoms due to lack of reflection or anything else matter. So, such diseases are not easier to identify, and there may have chances to grow these illnesses and affect millions of people worldwide. Whenever an accurate early prediction is possible, the risk factor of such diseases severity can be lessened. This study presents an innovative multi-tier weighted ensemble learning model (MTWEL) for predicting several diseases such as diabetes and hepatocellular carcinoma (HCC) and, therefore, reduces such above-said problems from the sufferers and lessens the chances of mortality. In the MTWEL model, we have utilized two lists of base classifiers in which six various machine learning (ML) classifiers are assigned in each list to develop two weighted ensemble learning (EL) models and combine them to form the proposed model by employing a weighted voting approach. In the MTWEL model, the parameters of all employed classifiers are tuned through the genetic algorithm-enabled hyperparameter optimization technique to form the optimized base models. The weight of each chosen optimized base model and generated EL model(s) is calculated using Matthews correlation coefficient value with the optimized weight value. In this study, neighborhood component analysis is employed to reduce the dimension of the given input dataset. The suggested model’s experimental outcomes are conducted on two real-world datasets to exhibit its performance. The suggested approach receives the best result in AUC values: 1.0 and 1.0, F1-score values: 0.9957 and 0.9947, and accuracy values: 0.9952 and 0.9929. Such outcomes in the form of performance exhibit that the proposed model is the best-suited model to predict several diseases than other techniques, and hence it helps clinicians make accurate decisions." @default.
- W3202113604 created "2021-10-11" @default.
- W3202113604 creator A5050839548 @default.
- W3202113604 creator A5086109552 @default.
- W3202113604 date "2021-01-01" @default.
- W3202113604 modified "2023-10-18" @default.
- W3202113604 title "Multi-Tier Ensemble Learning Model With Neighborhood Component Analysis to Predict Health Diseases" @default.
- W3202113604 cites W2115969689 @default.
- W3202113604 cites W2811085318 @default.
- W3202113604 cites W2887924068 @default.
- W3202113604 cites W2904290041 @default.
- W3202113604 cites W2947395823 @default.
- W3202113604 cites W2947510367 @default.
- W3202113604 cites W2948126609 @default.
- W3202113604 cites W2970160078 @default.
- W3202113604 cites W2971123115 @default.
- W3202113604 cites W2979164675 @default.
- W3202113604 cites W2980580024 @default.
- W3202113604 cites W2990637585 @default.
- W3202113604 cites W2996982661 @default.
- W3202113604 cites W2997606798 @default.
- W3202113604 cites W2999545566 @default.
- W3202113604 cites W2999979574 @default.
- W3202113604 cites W3000579245 @default.
- W3202113604 cites W3003248848 @default.
- W3202113604 cites W3005147719 @default.
- W3202113604 cites W3006128205 @default.
- W3202113604 cites W3006252432 @default.
- W3202113604 cites W3007939291 @default.
- W3202113604 cites W3008906415 @default.
- W3202113604 cites W3017382074 @default.
- W3202113604 cites W3020776760 @default.
- W3202113604 cites W3021382697 @default.
- W3202113604 cites W3026899257 @default.
- W3202113604 cites W3033347459 @default.
- W3202113604 cites W3037425138 @default.
- W3202113604 cites W3041139715 @default.
- W3202113604 cites W3041911350 @default.
- W3202113604 cites W3043363778 @default.
- W3202113604 cites W3044222650 @default.
- W3202113604 cites W3087333752 @default.
- W3202113604 cites W3087772152 @default.
- W3202113604 cites W3087798270 @default.
- W3202113604 cites W3090095883 @default.
- W3202113604 cites W3093816107 @default.
- W3202113604 cites W3095170425 @default.
- W3202113604 cites W3097563503 @default.
- W3202113604 cites W3102252048 @default.
- W3202113604 cites W3115324092 @default.
- W3202113604 cites W3117796717 @default.
- W3202113604 cites W3123155958 @default.
- W3202113604 cites W3126599133 @default.
- W3202113604 cites W3126647681 @default.
- W3202113604 cites W3135503315 @default.
- W3202113604 cites W3136662390 @default.
- W3202113604 cites W3137683787 @default.
- W3202113604 cites W3137755168 @default.
- W3202113604 cites W3154982301 @default.
- W3202113604 cites W3160483489 @default.
- W3202113604 cites W3171397873 @default.
- W3202113604 cites W3173240993 @default.
- W3202113604 cites W3183844156 @default.
- W3202113604 cites W3184114351 @default.
- W3202113604 cites W3192646885 @default.
- W3202113604 doi "https://doi.org/10.1109/access.2021.3117963" @default.
- W3202113604 hasPublicationYear "2021" @default.
- W3202113604 type Work @default.
- W3202113604 sameAs 3202113604 @default.
- W3202113604 citedByCount "2" @default.
- W3202113604 countsByYear W32021136042022 @default.
- W3202113604 crossrefType "journal-article" @default.
- W3202113604 hasAuthorship W3202113604A5050839548 @default.
- W3202113604 hasAuthorship W3202113604A5086109552 @default.
- W3202113604 hasBestOaLocation W32021136041 @default.
- W3202113604 hasConcept C119857082 @default.
- W3202113604 hasConcept C121332964 @default.
- W3202113604 hasConcept C154945302 @default.
- W3202113604 hasConcept C168167062 @default.
- W3202113604 hasConcept C2780692498 @default.
- W3202113604 hasConcept C41008148 @default.
- W3202113604 hasConcept C45942800 @default.
- W3202113604 hasConcept C97355855 @default.
- W3202113604 hasConceptScore W3202113604C119857082 @default.
- W3202113604 hasConceptScore W3202113604C121332964 @default.
- W3202113604 hasConceptScore W3202113604C154945302 @default.
- W3202113604 hasConceptScore W3202113604C168167062 @default.
- W3202113604 hasConceptScore W3202113604C2780692498 @default.
- W3202113604 hasConceptScore W3202113604C41008148 @default.
- W3202113604 hasConceptScore W3202113604C45942800 @default.
- W3202113604 hasConceptScore W3202113604C97355855 @default.
- W3202113604 hasLocation W32021136041 @default.
- W3202113604 hasLocation W32021136042 @default.
- W3202113604 hasOpenAccess W3202113604 @default.
- W3202113604 hasPrimaryLocation W32021136041 @default.
- W3202113604 hasRelatedWork W2883828728 @default.
- W3202113604 hasRelatedWork W3005055299 @default.
- W3202113604 hasRelatedWork W3167812655 @default.
- W3202113604 hasRelatedWork W4200126462 @default.